WWW.DISUS.RU

БЕСПЛАТНАЯ НАУЧНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 

Pages:     | 1 | 2 || 4 | 5 |   ...   | 19 |

«Литвицкий Пётр Францевич ПАТОФИЗИОЛОГИЯ Кафедра патофизиологии ...»

-- [ Страница 3 ] --

Гомозиготы страдают тяжелой гемолитической анемией с 4–6-месячного возраста. В результате тромбоза капилляров или венул серповидными эритроцитами развиваются трофические язвы (часто на голени), боли в животе, поражение сердца, глаз. Характерны поражения костно-суставной системы, гепатоспленомегалия.

Муковисцидоз

Муковисцидоз — множественное поражение экзокринных желез, сопровождающееся накоплением и выделением ими вязких секретов. Среди новорожденных частота муковисцедоза составляет 1:1500–1:2000. Кистозный фиброз является одним из самых распространенных моногенных заболеваний в Европе. Наследуется муковисцидоз по аутосомно-рецессивному типу. Известно более 130 мутантных аллелей; наиболее частая мутация — delF508. Она приводит к отсутствию фенилаланина в 508-м положении трансмембранного регуляторного белка. В зависимости от типа мутаций и их локализации функция гена может быть полностью или частично нарушена. При этом расстраивается регуляция переноса Cl– через мембраны эпителиальных клеток (транспорт Cl– тормозится, а Na+ усиливается).

Болезнь характеризуется закрытием протоков желез вязким секретом, который образуется в связи с повышенной резорбцией Na+ клетками протоков экзокринных желез. Нередко в протоках образуются кисты и развивается воспаление. У новорожденных нередко выявляют непроходимость кишечника (мекониальный илеус). У детей наиболее часто развивается легочная или легочно-кишечная форма заболевания. Оно проявляются повторными бронхитами, пневмониями, эмфиземой легких, а также нарушениями полостного и пристеночного пищеварения, вплоть до развития синдрома мальабсорбции (синдром нарушенного всасывания). При длительном течении развиваются дыхательная недостаточность, цирроз печени, портальная гипертензия, нередко приводящие к смерти.

Хромосомные болезни

Хромосомные болезни выявляются у новорожденных с частотой 6:1000.

Инициальное звено патогенеза — геномная или хромосомная мутация. Хромосомный дисбаланс приводит к остановке либо нарушению эмбрионального развития, в т.ч. ранних этапов органогенеза. В результате формируются множественные ВПР. Тяжесть нарушений обычно коррелирует со степенью хромосомного дисбаланса: чем больше хромосомного материала вовлечено в аберрацию, тем раньше проявляется хромосомный дисбаланс в онтогенезе, тем значительнее нарушения физического и психического развития индивида. Как правило, потеря хромосомы или ее части приводит к более тяжелым клиническим последствиям, чем присоединение хромосомы или ее части.

Хромосомные болезни классифицируют (рис. 4-14) по критериям изменения структуры и числа хромосом, а также в зависимости от типа клеток (половые или соматические).

Рис. 4-14. Виды хромосомных болезней.

Большинство геномных мутаций (полиплоидии, трисомии по крупным хромосомам, моносомии по аутосомам) летальны.

Насчитывают сотни болезней, вызванных нарушением структуры хромосом в результате делеции, дупликации, инверсии или транслокации их отдельных участков. Их клиническая картина и тяжесть определяются характером перестройки, величиной вовлеченных фрагментов и их функциональной значимостью.

Мутации в гаметах приводят к развитию т.н. полных форм хромосомных болезней, когда изменения кариотипа выявляют во всех клетках организма.

Мутации в соматических клетках на ранних этапах эмбриогенеза приводят к развитию мозаицизма — часть клеток организма имеет нормальный кариотип, а другая часть — аномальный. Это вызывает т.н. мозаичные формы хромосомных болезней. Варианты мозаичных организмов могут быть самыми разнообразными: не только из двух, но из трех и более клонов клеток с разными их количественными соотношениями. Фенотипические отклонения от нормы зависят от доли клеток различных типов, т.е. от стадии развития, на которой произошла мутация. Для хромосомных болезней характерно нарушение репродуктивной функции.

Трисомии

Синдром Патау, Трисомия 13 выявляется с частотой 1:6000. Летальность высокая: более 96% больных погибают в возрасте до 1–1,5 лет. Проявляется заболевание снижением массы тела, микроцефалией, недоразвитием мозга, аномалиями лица (запавшая переносица, расщелина верхней губы и неба), полидактилией, ВПР внутренних органов (поджелудочной железы, селезенки, сердца).

Синдром Эдвардса, Трисомия 18 выявляется у 1 из 7000 новорожденных. Около 2/3 детей с синдромом Эдвардса умирают в первые 6 мес жизни. Проявляется синдром Эдвардса сниженной массой тела, аномалиями лицевого и мозгового черепа (долихоцефалией, деформациями ушных раковин, гипоплазией нижней челюсти, микростомией), короткой грудиной, узкими межреберными промежутками, короткой и широкой грудной клеткой, ВПР сердца и других внутренних органов, нарушениями психомоторного развития.

Синдром Дауна, Трисомия 21 встречается с частотой 1:750 новорожденных и цитогенетически характеризуется простой трисомией (96% всех случаев болезни), транслокацией акроцентрических хромосом (3%), мозаицизмом (1%). Характерна малая средняя продолжительностью жизни (35 лет). Проявляется заболевание аномалиями лицевого и мозгового черепа (уплощенный затылок; запавшая спинка носа; косой «монголоидный» разрез глаз; толстые губы; утолщенный язык с глубокими бороздами; маленькие, низко расположенные уши; высокое небо), гипотонией мышц, аномалиями развития внутренних органов (сердца, почек, кишечника), короткими пальцами; аномалиями дерматоглифики (поперечная ладонная складка), умственной отсталостью разной степени (от минимальной дебильности до тяжелой идиотии).

Моносомии

Частичные моносомии характеризуются делецией части какой-либо хромосомы и встречаются редко (примерно 1:50 0001:100 000 родившихся детей). Пример: синдром кошачьего крика (5р-), развивающийся в результате делеции части короткого плеча хромосомы 5. Проявления: плач новорожденного, похожий на мяуканье кошки (причиной являются аномалии гортани в виде ее сужения, отечности слизистой оболочки и уменьшения величины надгортанника), черепно-лицевые аномалии (микроцефалия, антимонголоидный разрез глаз, гипертелоризм, круглое лицо у новорожденных, узкое, вытянутое — у взрослых), отставание умственного и физического развития у детей, идиотия у взрослых (у 1% IQ менее 20), нарушения структуры ребер и позвонков.

Аномалии половых хромосом

Нарушение расхождения половых хромосом приводит к образованию аномальных гамет: у женщин — XX и 0 (в последнем случае гамета не содержит половых хромосом); у мужчин — XY и 0. При слиянии половых клеток в подобных случаях возникают количественные нарушения половых хромосом. При болезнях, вызванных дефицитом или избытком Х хромосом, нередко наблюдается мозаицизм (таблица 4-1).

Таблица 4-1. Возможные наборы половых хромосом при нормальном и аномальном течении первого мейотического деления

Гаметы X 0 ХX
Х XX
норма
X0
синдром Шерешевского–Тернера
XXX
полисомия Х
Y XY
норма
Y0
леталь
XXY
Синдром Клайнфелтера
O X0
Синдром Шерешевского–Тернера
00
Леталь
XX
Норма?
XY XXY
Синдром Клайнфелтера
XY
Норма?
XXXY
Синдром Клайнфелтера


Синдром Клайнфелтера

Частота синдрома: 2–2,5 на 1000 новорожденных мальчиков. В кариотипе могут быть разнообразные цитогенетические варианты (47,XXY; 48,XXXY; 49,XXXXY и др.). Чаще встречается классический вариант 47,XXY.

Проявляется патология высоким ростом, непропорционально длинными конечностями, отложением жира по женскому типу, евнухоидным телосложением, скудным оволосением, гинекомастией, гипогенитализмом, бесплодием (в результате нарушения сперматогенеза, снижения продукции тестостерона и увеличения продукции женских половых гормонов), снижением интеллекта (чем больше в кариотипе добавочных хромосом, тем более выражено).

Лечение патологии мужскими половыми гормонами направлено на коррекцию вторичных половых признаков. Однако и после терапии больные остаются бесплодными.

Синдромы полисомии Х

Трисомия Х. Наиболее частым синдромом из группы полисомий X является синдром трисомии Х (47,XXX): частота — 1:1000 новорожденных девочек, кариотип 47,XXX; пол — женский, фенотип женский; как правило, физическое и психическое развитие у женщин с этим синдромом не имеет отклонений от нормы.

Синдром Шерешевского–Тернера

Частота синдрома равна в среднем 1:3000 новорожденных девочек; кариотип: 45, Х0. Встречаются и другие варианты (например, изохромосома длинного плеча X — Xqi, делеция короткого плеча — Xp, делеция длинного плеча — Xq). Проявляется заболевание низким ростом, короткой шеей с избытком кожи или крыловидной складкой, широкой, часто деформированной грудной клеткой, деформацией локтевых суставов, недоразвитием первичных и вторичных половых признаков, бесплодием. У новорожденных почти во всех случаях наблюдается лимфатический отек кистей и стоп. Раннее лечение женскими половыми гормонами может оказаться эффективным.

Болезни с наследственным предрасположением

Болезни с наследственным предрасположением называют также многофакторными, т.к. их возникновение определяется взаимодействием наследственных и средовых факторов. В основе предрасположенности к болезням находится генетическое разнообразие (генетический полиморфизм) популяций по ферментам, структурным, транспортным белкам, антигенным системам и т.д.

Количественная оценка вклада наследственного и средового факторов при возникновении болезней с наследственным предрасположением рассчитывется по специальным формулам Наиболее адекватен рассчет коэффициента наследуемости (Н) и роли средовых факторов (Е, от англ. environment — окружающая среда) по формуле, предложенной Хольцингером:

Где:

100 – Кдз;

Кмз — % конкордантных по данному признаку (болезни) в данной выборке монозиготных близнецов (по отношению ко всей их популяции);

Кдз — % конкордантности по данному признаку (болезни) в данной выборке дизигот по отношению ко всей популяции близнецов.

С учетом коэффициента Хольцингера можно рассчитать роль факторов окружающей среды в возникновении любой патологии — коэффициент E:

Частота болезней с наследственным предрасположением достигает более 90% от всех неинфекционных форм патологий. К таким болезням относят ИБС, гипертоническую болезнь, бронхиальную астму, ряд психических заболеваний, СД, ревматические болезни, язвенную болезнь желудка, ВПР и многие другие.

Виды многофакторных болезней

Болезни с наследственным предрасположением дифференцируют на группы в зависимости от числа генов, определяющих предрасположенность: на моногенные и полигенные.

Моногенные заболевания

Моногенные болезни с наследственным предрасположением вызываются одним мутантным геном и возникают при действии конкретного (часто специфического) и обязательного фактора внешней среды. К разрешающим факторам относятся загрязнение среды (химическими соединениями, пылевыми частицами), пищевые вещества и добавки, ЛС. Примерами могут служить: непереносимость лактозы (при мутантной форме гена лактазы употребление молока приводит к развитию кишечного дискомфорта и поноса); поражение периферических нервов (проявляющееся невритами у гомозигот по мутантному аллелю гена, регулирующего реакцию ацетилирования изониазида) при введении пациенту этого противотуберкулезного препарата препарата.

Полигенные болезни

Предрасположенность к развитию полигенных болезней определяется взаимодействием нормальных и/или измененных (мутировавших) генов. Каждый из них по отдельности не приводит к развитию заболевания. Индивид с такой комбинацией генов достигает «порога возникновения» болезни и заболевает. Этот порог может быть преодолен под действием определенного фактора окружающей среды.

Характеристика многофакторных болезней

Наследование многофакторных болезней не соответствует менделевским закономерностям. Патогенез болезней с наследственным предрасположением зависит от «удельного вклада» генетических и средовых факторов. Эта зависимость различна как для разных заболеваний, так и для каждого человека. Именно полиморфизм создает основу для предрасположенности организма к той или иной патологии.

Многофакторные болезни возникают в результате взаимодействия предрасположенного организма с комплексом неблагоприятных факторов внешней среды. Чем выше генетическая предрасположенность организма (т.е. чем ближе к «порогу возникновения» болезни он находится), тем менее интенсивным и длительным должно быть воздействие средового фактора для запуска патологического процесса, заболевания или состояния.

Для многофакторных болезней характерно наличие большого числа клинических вариантов. Они образуют ряд переходных состояний: от минимальных, клинически стертых форм до тяжелых проявлений. При болезнях с наследственным предрасположением наблюдается более высокая конкордантность по заболеванию у монозиготных близнецов в сравнении с дизиготными.

Врожденные пороки развития

Врожденные пороки развития (ВПР), включая аномалии развития, дисплазии и стигмы дизэмбриогенеза, а также причины их появления изучает тератология.

Механизм формирования ВПР в ходе внутриутробного развития обозначают как тератогенез, а термин «тератоген» означает фактор, вызвавший ВПР. Большинство ВПР обусловлено воздействием факторов внешней среды, генетическими дефектами или их сочетанием. В ряде случаев не удается установить причину ВПР (спорадические заболевания). Число новорожденных с ВПР составляет 2–3% общего количества родившихся живыми детей.

Причины ВПР многочисленны. Ими может быть вирусная инфекция (краснуха, цитомегаловирусная и герпетическая инфекции), токсоплазмоз, сифилис, радиация, ЛС, наркотические вещества, химические факторы окружающей среды, болезни матери и т.д. Восприимчивость к действию тератогенов зависит от стадии развития. Риск возникновения ВПР особенно велик в периоды эмбриогенеза и органогенеза.

Причины врожденных пороков развития

Тератогенные воздействия

Тератогенными обозначают такие средовые факторы, которые нарушают развитие эмбриона и/или плода, воздействуя на них во время беременности. Около 10% всех ВПР обусловлено воздействием факторов внешней среды. Эффект тератогенов обусловлен влиянием на гисто- и органогенез, рост и развитие плода.

Генетические факторы могут приводить как к единичным ВПР, так и к развитию различных синдромов.

Спорадические заболевания часто бывают следствием нарушения эмбрионального развития или патологического течения беременности (например, при окклюзии кровеносных сосудов). Некоторые врожденные аномалии могут возникать в результате спонтанной доминантной мутации соматических клеток, либо приводящей к летальному исходу, либо оказывающей воздействие на репродуктивную функцию и не передающейся потомству.

Факторы риска развития ВПР делят на эндогенные и экзогенные (средовые). Среди эндогенных факторов риска ВПР выделяют мутагены, эндокринные и метаболические заболевания матери, аномалии половых клеток, возраст родителей.

Мутагены могут вызвать изменения генетического аппарата. На долю генных и хромосомных мутаций приходится более 30% всех ВПР. Генные мутации являются причиной около 20% от всех ВПР (например, расщелины губы и неба как одно из клинических проявлений синдрома Ван дер Вуда). Хромосомные мутации обусловливают развитие примерно 10% ВПР (например, пороки сердца при синдроме Дауна).

Эндокринные заболевания и метаболические расстройства в организме матери нарушают развитие органов плода или приводят к самопроизвольным абортам. Наиболее часто ВПР наблюдаются при СД, вирилизирующих опухолях половых желез и коры надпочечников, фенилкетонурии.

При аномалиях половых клеток (результат нарушения спермато- и/или овогенеза) возникают анеуплоидии и триплоидии.

Возраст родителей — важный фактор риска ВПР. Установлена прямая зависимость нарастания частоты некоторых ВПР (например, расщелины губы и неба) и аутосомно-доминантных наследственных заболеваний (например, ахондроплазии) с увеличением возраста отца. ВПР дыхательной системы чаще отмечают у детей юных матерей. У матерей старших возрастных групп увеличена частота рождения детей с геномными мутациями (классический пример: значительное увеличение трисомий, в т.ч. синдром Дауна).

Экзогенные факторы риска

На долю средовых факторов риска приходится около 10% всех ВПР. Природа экзогенных факторов риска может быть физической, химической, биологической и сочетанной. Физические воздействия: радиационные, вибрационные, шумовые, температурные, механические — значимые факторы развития ВПР. Из механических факторов большое клиническое значение имеют амниотические сращения, маловодие и миомы матки. Амниотические сращения (тяжи Симонара) могут приводить к перетяжкам на конечностях, вызывая гипоплазию их дистальных отделов или ампутацию. Маловодие может обусловить развитие ВПР конечностей, гипоплазии нижней челюсти и др. Крупные миомы препятствуют нормальному росту и развитию эмбриона или плода. Химические агенты — одна из наиболее частых причин ВПР. Так, некоторые ЛС [например, антиконвульсант гидантоин вызывает развитие расщелины губы и неба, микроцефалию, гипоплазию ногтей и концевых фаланг пальцев, деформацию носа; транквилизатор талидомид может вызвать ВПР верхних и нижних конечностей (вплоть до амелии), расщелины губы и неба]. Химические вещества, применяемые в быту и в промышленности (например, продукты метаболизма этанола могут привести к алкогольной эмбрио- или фетопатии; бензин, бензол, фенол, соли тяжелых металлов обладают эмбриотоксическими свойствами). Биологические факторы (например, вирусы краснухи и цитомегаловирус) нередко вызывают поражение ЦНС, ВПР органов зрения и слуха. Сочетанные воздействия (как результат совместного потенцирующего влияния генетических и средовых факторов) нередко вызывают ВПР. Их доля среди всех причин ВПР составляет примерно 50%.При этом каждый из них отдельно может и не вызвать ВПР.





Виды врожденных пороков развития

В зависимости от срока беременности при воздействии повреждающих факторов выделяют гаметопатии, бластопатии, эмбриопатии и фетопатии (рис. 4-15).

Рис. 4-15. Виды врожденных пороков.

Гаметопатии — ВПР, являющиеся результатом воздействия повреждающих факторов на половые клетки (например, это все ВПР, вызываемые мутациями в половых клетках).

Бластопатии развиваются вследствие поражения бластоцисты — зародыша первых 15 сут после оплодотворения (до завершения формирования зародышевых листков). Результатом бластопатий являются, например, двойниковые пороки (сросшиеся близнецы), циклопия (наличие одного или двух глазных яблок в единственной орбите по срединной линии лица).

Эмбриопатии — результат воздействия тератогенного фактора на эмбрион в период с 16-х суток до 8–9-й недели беременности. К этой группе относят талидомидные, диабетические, алкогольные и некоторые медикаментозные эмбриопатии, а также ВПР, развившиеся под влиянием вируса краснухи.

Фетопатии — следствие повреждения плода от 9-й недели до момента рождения. К фетопатиям относят, например, крипторхизм, открытый боталлов проток или пренатальную гипоплазию какого-либо органа или плода в целом.

Механизмы развития врожденных пороков развития

Механизмы формирования ВПР заключаются в искажениях межмолекулярных и межклеточных взаимодействий, а также в нарушениях морфогенетических процессов.

Расстройства межмолекулярных и межклеточных взаимодействий вызывают расстройства синтеза биологически активных веществ (БАВ) (гормонов, цитокинов и др.), структуры белков (например, ферментов или компонентов мембран, энергетического обеспечения реакций метаболизма и жизненно важных процессов, искажающих дифференцировку и функции клеток, тканей и органов.

Нарушения морфогенетических процессов (пролиферация, миграция, дифференцировка и гибель клеток) приводят к аплазии (отсутствие органа при наличии его сосудистой ножки) или гипоплазии (недоразвитию) органа или его части, задержке слияния эмбриональных структур (например, расщелины неба, губы; спинномозговые и черепно-мозговые грыжи), персистированию эмбриональных структур, к атрезии и гетеротопии (наличие клеток и/или тканей в другом органе или в тех зонах органа, где их в норме не должно быть [например, участки ткани поджелудочной железы в дивертикуле Меккеля]) и т.д. и т.п. (см. подраздел «Категории ВПР»).

Виды врожденных пороков развития

Наиболее частые разновидности ВПР представлены на рисунке 4-16.

Рис. 4-16. Наиболее частые виды врожденных пороков развития.

Агенезия представляет собой отсутствие органа (например, тимуса, почки, глаз). Аплазия и гипоплазия — отсутствие или значительное уменьшение органа при наличии его сосудистой ножки и нервов (например, одной почки, селезенки, легкого, конечности, кишечника). Атрезия характеризуется отсутствием канала или естественного отверстия (например, атрезия наружного слухового прохода, пищевода, ануса). Гетеротопия это перемещение клеток, тканей или части органа в другую ткань или орган (например, клеток поджелудочной железы в дивертикул Меккеля, хромаффинных клеток в ткань легких). Персистирование — сохранение эмбриональных структур, исчезающих в норме к определенному этапу развития (например, открытый артериальный проток у годовалого ребенка, крипторхизм). Стеноз выражается сужением просвета отверстия или канала (например, клапанного отверстия сердца, привратника желудка, фрагмента кишечника). Удвоение (утроение) проявляется увеличением числа органов или их части (например, удвоение матки, мочеточников). Эктопия характеризуется необычным расположением органа (например, почки в малом тазу, сердца — вне грудной клетки).

Методы диагностики наследственных форм патологии

Основные методы диагностики наследственных форм патологии и методы изучения их патогенеза приведены на рисунке 4-17.

Рис. 4-17. Методы диагностики и анализа наследственных форм патологии.

Ниже коротко охарактеризованы цели и возможности клинико-синдромологического и клинико-генеалогического методов, а также методов цитогенетической, биохимической и молекулярной диагностики.

Клинико-синдромологический метод позволяет выявлять морфологические, биохимические и функциональные признаки наследственных форм патологии (например, дефицит плазменного фактора VIII при подозрении на гемофилию A; кариотип 45,Х0 при подозрении на синдром Шерешевского–Тернера; поражения скелета, ССС и глаз при подозрении на синдром Марфана).

Клинико-генеалогический метод выявляет патологические признаки и прослеживает особенности их передачи в поколениях при составлении родословной. Цель метода — установить закономерности наследования признака:

 определить тип наследования (доминантного, рецессивного, ауто- или гоносомного);

 выявить носителей гена, вызывающего развитие болезни);

 оценить пенетрантность (частоты проявления) гена;

 определить генетический риск (вероятность рождения больного ребенка).

Составление родословной начинают со сбора сведений о семье консультирующегося или пробанда. Консультирующимся называют лицо, обратившееся к врачу или первое попавшееся в поле зрения исследователя лицо. Пробанд — больной или носитель изучаемого признака. Во многих случаях консультирующийся и пробанд являются одним и тем же лицом. Детей одной родительской пары называют сибсами (братья и сестры). Семьей в узком смысле называют родительскую пару и их детей, но иногда и более широкий круг кровных родственников, хотя в последнем случае лучше применять термин «род». Примеры родословных при разных типах наследования представлены на рисунках 4-8–4-12.

Близнецовый метод основан на сравнительном анализе частоты определенного признака в разных группах близнецов, а также на сопоставлении с партнерами монозиготных пар между собой и общей популяцией. Идентичность близнецов по анализируемому признаку обозначают как конкордантность, а отличие как дискордантность. Роль наследственности и факторов среды в возникновении патологии у близнецов оценивают по специальным формулам.

Цитогенетическая диагностика основана на микроскопическом изучении хромосом с целью выявления структурных нарушений в хромосомном наборе (кариотипирование). В качестве материала используют тканевые культуры с большим числом делящихся клеток, чаще лимфоциты периферической крови. Хромосомы на стадии метафазы изучают при помощи специальных методов окрашивания и составляют идиограммы (систематизированные кариотипы с расположением хромосом от наибольшей к наименьшей), что позволяет выявлять геномные и хромосомные мутации.

Биохимическая диагностика базируется на изучении биохимических показателей, отражающих существо болезни (например, активность ферментов, наличие патологических метаболитов, концентрация компонентов ферментативной реакции).

Объектами исследования являются метаболиты биологических жидкостей и клеток (например, фенилаланин при фенилпировиноградной олигофрении; кетоновые тела (КТ) при сахарном диабете), аномальные белки (например, Hb при гемоглобинопатиях), дефектные ферменты (например, холинэстераза, глутатионпероксидаза, каталаза).

При помощи методов молекулярной ДНК-диагностики устанавливают последовательность расположения отдельных нуклеотидов, выделяют гены и их фрагменты, устанавливают их наличие в изучаемых клетках. К числу наиболее эффективных методов относят гибридизацию ДНК (блоттинг, in situ и т.д.), клонирование ДНК, полимеразную цепную реакцию (ПЦР).

Гибридизацию ДНК применяют для определения порядка расположения нуклеотидов в исследуемом генетическом материале.

Блот-гибридизацию используют для выявления интересующих (в т.ч. мутантных) генов.

Полимеразную цепную реакцию (ПЦР) (специфическую амплификацию небольшого участка ДНК) применяют для изучения мест предполагаемых мутаций и других особенностей структуры ДНК. Для исследования можно использовать любой биологический материал, содержащий ДНК (например, кусочек ткани, каплю или пятно крови, смыв полости рта, луковицу корня волос).

Биологическое моделирование проводят для анализа возможных генетических дефектов человека с использованием в качестве объекта исследования животных (здоровых или мутантных), а также для изучения возможных мутагенных и тератогенных эффектов ЛС и других агентов, для разработки методов генной инженерии.

Принципы лечения наследственных форм патологии

Лечение наследственных болезней (при соблюдении индивидуального характера помощи) базируется на 3 основных принципах: этиотропном, патогенетическом и симптоматическом.

Этиотропный принцип лечения направлен на устранение причины заболевания. С этой целью разрабатывают, апробируют и частично применяют методы коррекции генетических дефектов, называемые генной терапией. Цель генной терапии — внесение в клеточный геном нормально экспрессирующегося «здорового» гена, восполняющего функцию мутантного («больного») гена. Конечная задача — внедрение нормального гена в геном клеток пораженного органа. Эту процедуру выполняют при помощи трансфекции — введения в геном клетки вектора, содержащего нужный и здоровый ген человека. В качестве векторов обычно применяют модифицированные (дефектные по репликации) вирусы (ретро-, адено- и др.). В качестве клеток-мишеней для генной терапии применяют только соматические (но не половые) клетки — носители патогенных генов.

Патогенетический принцип лечении направлен на разрушение цепи патогенеза заболевания. Для достижения этой цели применяют несколько методов:

 заместительную терапию (введение в организм дефицитного вещества, не синтезирующегося в связи с аномалией гена, который контролирует продукцию данного агента; например, инсулина при СД, соответствующих ферментов при гликогенозах и агликогенозах, антигемофильного глобулина человека при гемофилии);

 коррекцию метаболизма путем ограничения попадания в организм веществ, метаболически не усваивающихся им (например, фенилаланина или лактозы), выведения из организма метаболитов, накапливающихся в нем в избытке (например, фенилпировиноградной кислоты или холестерина), регуляции активности ферментов [например, подавление активности креатинфосфокиназы (КФК) при отдельных видах миодистрофий, активация липопротеинлипазы (ЛПЛаза) крови при гиперхолестеринемии];

 хирургическое устранение дефектов (например, создание шунта между нижней полой и воротной венами у пациентов с «гепатотропными» гликогенозами).

Симптоматическая терапия направлена на устранение симптомов, усугубляющих состояние пациента (например, применение веществ, снижающих вязкость секретов экзокринных желез при муковисцидозе; хирургическое удаление дополнительных пальцев и/или перемычек кожи между ними при поли- и синдактилии; выполнение пластических операций при дефектах лица, пороках сердца и крупных сосудов).

Профилактика

Цель профилактического направления медицинской генетики — предотвратить или снизить риск возникновения заболеваний. Эта цель может быть достигнута на 4 этапах индивидуального развития:

 прегаметическом (охрана здоровья человека в репродуктивном возрасте, охрана окружающей среды);

 презиготном (например, искусственная инсеминация, медико-генетическое консультирование);

 пренатальном (все виды дородовой диагностики);

 постнатальном (раннее выявление и профилактика заболевания до момента развития симптомов заболевания).

Методы профилактики

Медико-генетическое консультирование является основным видом профилактики врожденной и наследственной патологии. Задача консультирования: сформулировать прогноз для потомства, течения заболевания, качества жизни и здоровья.

Пренатальную диагностику осуществляют в I и II триместрах беременности (в периоды, когда возможно прерывание беременности при обнаружении патологии плода). С этой целью проводят:

 ультразвуковое исследование, которое позволяет установить наличие беременности, количество плодов, выявлять грубые аномалии плода;

 биохимические анализы сыворотки крови матери: определение концентрации -фетопротеина, хорионического гонадотропина, несвязанного эстриола и других веществ с целью диагностики ВПР и скрининга хромосомной патологии;

 фетоскопию, которая обеспечивает прямое наблюдение плода с помощью специальной оптической системы, позволяет диагностировать заболевания кожи, нарушения развития половых органов, дефекты лица, конечностей и пальцев, производить биопсию тканей плода;

 цитогенетические, биохимические и молекулярно-генетические исследования клеток и тканей плода и/или матери.

Преклиническую диагностику (скрининг) проводят с целью ранней диагностики наследственных болезней обмена веществ у новорожденных. Скринингу подлежат наследственные заболевания обмена:

 приводящие к гибели или инвалидизации (без раннего выявления и своевременного лечения) ребенка;

 встречающиеся с частотой не реже чем 1:20 000–1:50 000 новорожденных;

 имеющие эффективные и экономичные методы предварительного выявления;

Диспансеризацию семей с наследственной патологией выполняют для предупреждения рождения больного ребенка или зачатия аномального плода (первичная профилактика).

Контроль мутагенной опасности факторов окружающей среды реализуют путем предотвращения образования, снижения содержания, длительности и/или силы действия на организм химических, физических и биологических мутагенных агентов. Достигают этого комплексом организационных и гигиенических мер на производстве, в учреждениях и быту (например, возведением очистных сооружений; применением спецодежды, очисткой воздуха, воды и продуктов питания; использованием средств противорадиационной защиты).

Глава 5

  1. Повреждение клетки

В учении о повреждении клетки выделяют 3 раздела:

 повреждение клетки в целом;

 повреждение отдельных субклеточных структур и компонентов;

 повреждение межклеточного взаимодействия и кооперации.

Повреждение клетки:
наследственные и/или приобретенные нарушения ее структур, обмена веществ, физико-химических свойств, функции,
вызывающие нарушение жизнедеятельности ее, ткани, органа и/или организма в целом.

Причины повреждения клетки

Повреждение клетки — результат воздействия на нее патогенных агентов. Причины повреждения клетки дифференцируют по природе патогенных факторов, их происхождению и последствиям их воздействия.

Природа повреждающего фактора может быть физической, химической и биологической (рис. 5-1).

Рис. 5-1. Причины повреждения клеток.

Физические повреждающие факторы

Наиболее частые причины повреждения клетки физической природы — это механические, температурные, осмотические, свободнорадикальные (избыток свободных радикалов и продуктов активации липопероксидных процессов повреждают мембраны и денатурируют белки). Патогенное действие на клетку могут оказывать также ионизирующая радиация, электромагнитные факторы и другие агенты физического характера.

К механически повреждающим факторам относят удары, растяжения (например, при перерастяжении мышечной ткани или органов), сдавление (в частности, опухолью, гематомой, рубцом, экссудатом), гравитационные перегрузки и др.

Чрезмерное повышение температуры среды, окружающей клетку (до 40–50 °C и выше), может привести к денатурации белка, нуклеиновых кислот, декомпозиции ЛП, повышению проницаемости клеточных мембран и другим изменениям.

Значительное снижение температуры существенно замедляет или прекращает внутриклеточные метаболические процессы и может привести к кристаллизации внутриклеточной жидкости и разрывам мембран, что означает гибель клетки.

Гиперосмия может развиться вследствие накопления в клетке продуктов неполного окисления органических субстратов или избытка ионов. Последнее, как правило, сопровождается поступлением в клетку воды по градиенту осмотического и онкотического давления, набуханием клетки и растяжением (вплоть до разрыва) плазмолеммы и мембран органелл.

Снижение осмотического давления в клетке или повышение его во внеклеточной среде приводит к потере клеточной жидкости, сморщиванию (пикнозу) и нередко — к гибели клетки.

Химические повреждающие факторы

К ним относят органические и неорганические кислоты и щелочи, соли тяжелых металлов, цитотоксические соединения, многие ЛС, действующие на клетку. Повреждение клетки может вызвать как избыток, так и дефицит одного и того же агента. Например, избыточное содержание кислорода в тканях активирует процесс свободнорадикального перекисного окисления липидов (СПОЛ), продукты которого необратимо повреждают ферменты и мембраны клеток; с другой стороны, снижение содержания кислорода приводит к нарушениям окислительных процессов, понижению образования АТФ и как следствие — к расстройствам функций клетки.

Классический пример цитотоксических соединений — ингибиторы ферментов. Так, цианиды подавляют активность цитохромоксидазы; этанол и его метаболиты ингибируют многие ферменты клетки; вещества, содержащие соли мышьяка, угнетают пируватоксидазу.

Лекарственные средства как факторы повреждения клетки

Неправильное применение ЛС (чаще в виде передозировки) может привести к повреждению клеток. Так, строфантин-К подавляет избыточную активность мембранной Na+,K+-АТФазы кардиомиоцитов, но его передозировка ведет к дисбалансу внутриклеточного содержания ионов и воды. Инсулин регулирует процесс утилизации клеткой глюкозы. Однако его передозировка может вызвать истощение запасов гликогена и ухудшить энергетическое обеспечение клетки.

Биологические повреждающие факторы

К ним относят, главным образом, инфекционные агенты и цитотоксические факторы системы ИБН.

Инфекционные агенты (вирусы, риккетсии, микробы, гельминты, грибы, прионы) сами по себе, продукты их жизнедеятельности или деградации вызывают расстройства функций клетки, нарушают течение в ней метаболических реакций, проницаемость или даже целостность мембран, подавляют активность клеточных ферментов.

Цитотоксическими факторами являются эндо- и экзотоксины, аутоагрессивные T-лимфоциты и АТ (например, при явлениях молекулярной мимикрии). Эндо- и экзотоксины, а также структурные компоненты бактерий, вирусов и паразитов могут изменять антигенный состав клетки. Это приводит к появлению АТ или иммунных T-лимфоцитов, повреждающих клетки организма. В результате этого могут развиться иммунопатологические процессы (аллергия, патологическая толерантность, состояния иммунной аутоагрессии).

Происхождение повреждающих факторов

Причины повреждения клеток в зависимости от их происхождения разделяют на экзогенные и эндогенные, инфекционные и неинфекционные.

К экзогенным факторам повреждения относят физические воздействия (механические травмы, электрический ток, тепло, холод), химические агенты (кислоты, щелочи, этанол, сильные окислители) и биологические факторы инфекционной (например, вирусы, риккетсии, бактерии, гельминты и др.) или неинфекционной природы (например, ЛС биолгического происхождения при их передозировке).

К эндогенным факторам повреждения относят агенты физической природы (например, избыток в клетке или во внеклеточной среде свободных радикалов, значительные колебания осмотического давления), химической (например, накопление или дефицит ионов [Н+, K+, Ca2+ и др.]), кислорода, углекислого газа, перекисных соединений органических и неорганических веществ, метаболитов и др.) и биологической (например, дефицит или избыток гормонов, ферментов, ПГ и др.; агенты, высвобождающиеся из поврежденных или погибших клеток: ионы, лизосомальные ферменты, метаболиты, а также цитотоксические факторы системы ИБН).

Примерами инфекционно-паразитарных эндогенных факторов могут быть эндо- и экзотоксины микроорганизмов-сапрофитов, много- и одноклеточные паразиты.

К факторам неинфекционного генеза относят агенты физической, химической или биологической (но неинфекционной) природы, например, избыток в клетке свободных радикалов кислорода, продуктов липопероксидации или тиреоидных гормонов.

Реализация эффектов повреждающих факторов

Действие повреждающих факторов на клетки осуществляется прямо (первичные факторы повреждения) или опосредованно. В последнем случае речь идет о формировании цепи вторичных реакций, реализующих повреждающее влияние т.н. первичных патогенных факторов. Агенты и воздействия, опосредующие развитие различных форм патологии клетки получили название посредников — медиаторов повреждения. Примерами могут служить медиаторы воспаления, аллергии, канцерогенеза, лихорадки.

Общие механизмы повреждения

Патогенные агенты вызывают нарушение функций клеток. В таблице 5-1 приведены наиболее важные механизмы клеточной альтерации.

Таблица 5-1. Основные механизмы повреждения клетки

Расстройства энергетического обеспечения клетки
• Снижение интенсивности и/или эффективности ресинтеза АТФ.
• Нарушение механизмов транспорта энергии АТФ.
• Расстройство механизмов использования энергии АТФ.
Повреждение мембран и ферментов клетки
• Чрезмерное образование активных форм кислорода, интенсификация свободнорадикальных реакций и СПОЛ.
• Значительная активация гидролаз (лизосомальных, мембраносвязанных, свободных).
• Внедрение амфифильных соединений в липидную фазу мембран и их детергентное действие.
• Торможение ресинтеза поврежденных компонентов мембран и/или синтеза их de novo.
• Нарушение конформации макромолекул белка, ЛП, фосфолипидов.
• Перерастяжение и разрыв мембран набухших клеток и/или их органелл.
Дисбаланс ионов и воды в клетке
• Изменение соотношения отдельных ионов в цитозоле.
• Нарушение трансмембранного соотношения ионов.
• Гипергидратация клеток.
• Гипогидратация клеток.
• Нарушения электрогенеза.
Нарушения в геноме и/или механизмов экспрессии генов
• Мутации.
• Дерепрессия патогенных генов.
• Репрессия жизненно важных генов.
• Трансфекция (внедрение в геном чужеродной ДНК).
• Дефекты транскрипции, процессинга, трансляции, посттрансляционной модификации.
• Дефекты репликации и репарации.
• Нарушение митоза и мейоза.
Расстройства регуляции функций клеток
• Нарушение рецепции регулирующих воздействий.
• Образование вторых посредников.
• Расстройства регуляции метаболических процессов в клетке.

Расстройства энергетического обеспечения клетки

Энергетическое обеспечение клеток осуществляется за счет АТФ, образующейся преимущественно в процессе окислительного фосфорилирования в митохондриях и в меньшей мере — в реакциях гликолиза в цитозоле.

Энергоснабжение клетки может расстраиваться на любом из этапов: ресинтеза, транспорта и утилизации энергии АТФ (рис. 5-2).

Рис. 5-2. Механизмы нарушения энергообеспечения в поврежденной клетке.

Нарушения ресинтеза АТФ. Ресинтез АТФ может расстраиваться в результате дефицита кислорода и/или субстратов метаболизма, снижения активности ферментов тканевого дыхания и гликолиза, повреждения и разрушения митохондрий, в которых осуществляются реакции цикла Кребса и перенос электронов к молекулярному кислороду, сопряженный с фосфорилированием АДФ.

Расстройства транспорта энергии. Заключенная в макроэргических связях энергия АТФ в норме доставляется от мест ресинтеза — митохондрий и цитозоля к эффекторным структурам (миофибриллам, мембранным ионным насосам и др.) с помощью АДФ-АТФ-транслоказы (адениннуклеотидилтрансферазы) и КФК. Адениннуклеотидилтрансфераза обеспечивает транспорт энергии макроэргической фосфатной связи АТФ из матрикса митохондрий через их внутреннюю мембрану, а КФК переносит ее далее на креатин с образованием креатинфосфата, который поступает в цитозоль (рис. 5-3). КФК эффекторных клеточных структур транспортирует фосфатную группу креатинфосфата на АДФ с образованием АТФ, который и используется в процессах жизнедеятельности клетки.

Рис. 5-3. Механизм транспорта энергии АТФ в клетке. АдТ — адениннуклеотидилтрансфераза; Кр — креатин; Кф — креатинфосфат; СМ — субстраты метаболизма; ФН — фосфат неорганический.

Системы транспорта энергии могут быть повреждены различными патогенными агентами, в связи с чем (даже на фоне высокого общего содержания АТФ в клетке) может развиваться дефицит АТФ в энергорасходующих структурах.

Расстройство утилизации энергии. Нарушения энергообеспечения клеток и расстройства их жизнедеятельности могут развиваться в результате повреждения механизмов утилизации энергии, главным образом, за счет уменьшения активности АТФаз [АТФаза миозина, Na+,K+-АТФаза плазмолеммы, протонная и калиевая АТФаза, Са2+-АТФаза (Са2+-насос) и др.]. Следовательно, расстройство жизнедеятельности клеток может развиваться даже в условиях нормального или повышенного содержания в клетке АТФ.

Нарушение энергообеспечения, в свою очередь, может стать одним из факторов расстройств функции мембранного аппарата клеток, их ферментных систем, процессов транспорта ионов и воды, а также механизмов регуляции клетки.

Повреждение мембран и ферментов клетки

Повреждение клеточных мембран и ферментов играет существенную роль в расстройстве жизнедеятельности клетки, а также, что особенно важно, в переходе обратимых изменений в ней в необратимые.

Основные механизмы повреждения клеточных мембран приведены на рисунке 5-4. Все указанные механизмы прямо или опосредованно ведут к повреждению, изменению конформации и/или кинетических свойств ферментов, многие из которых связаны с мембранами.

Рис. 5-4. Механизмы повреждения мембран клеток. СРР – свободнорадикальная реакция.

Свободнорадикальные реакции

Свободнорадикальные процессы и реакции СПОЛ — необходимое звено таких жизненно важных процессов, как транспорт электронов в цепи дыхательных ферментов, синтез ПГ и лейкотриенов, пролиферация и дифференцировка клеток, фагоцитоз, метаболизм катехоламинов и др. В реакции СПОЛ могут вовлекаться белки, нуклеиновые кислоты, липиды, в особенности фосфолипиды. СПОЛ важна для регуляции липидного состава биомембран и активности ферментов. Последнее является результатом как прямого действия продуктов липопероксидных реакций на ферменты, так и опосредованного — через изменение состояния мембран, с которыми ассоциированы молекулы многих ферментов.

Интенсивность СПОЛ регулируется соотношением факторов, активирующих (прооксидантов) и подавляющих (антиоксидантов) этот процесс (рис. 5-5). К числу наиболее активных прооксидантов относят легко окисляющиеся соединения, индуцирующие появление свободных радикалов, в частности нафтохиноны, витамины A и D, восстановители — НАДФН2, НАДН2, липоевая кислота, продукты метаболизма ПГ и катехоламинов.

Рис. 5-5. Компоненты системы перекисного окисления липидов.

Этапы СПОЛ. Процесс липопероксидации можно условно разделить на 3 этапа (см. рис. 5-6 и рис. 5-7):

 кислородной инициации («кислородный» этап — образование активных форм кислорода);

 генерации свободных радикалов органических и неорганических веществ (свободнорадикальный этап);

 продукции перекисей и гидроперекисей липидов (перекисный этап).

Активные формы кислорода. Начальным звеном СПОЛ при повреждении клетки является, как правило, образование т.н. активных форм кислорода:

 синглетного (1O2);

 супероксидного радикала (O2–);

 перекиси водорода (Н2О2);

 гидроксильного радикала (OH–).

Супероксидный радикал O2– генерируют лейкоциты (особенно интенсивно при фагоцитозе), митохондрии в процессе окислительных реакций, разные ткани при метаболической трансформации катехоламинов, синтезе ПГ и других соединений.

Пероксид водорода H2О2 образуется при взаимодействии (дисмутации) радикалов O2– в цитозоле клеток и матриксе митохондрий. Этот процесс катализирует супероксиддисмутаза (СОД):

O2– + O2– + 2H+  H2O2 + O2.

Радикал O2– и H2O2 оказывают прямое повреждающее действие. Наряду с этим, под влиянием ионов железа, присутствующих как в цитозоле, так и в биологических жидкостях, радикал O2– и H2O2 могут трансформироваться (с участием каталазы) в весьма агрессивный и обладающий высоким патогенным эффектом гидроксильный радикал OH–.

H2O2 + Fe2 +  Fe3 + + OH + OH–;

O2– + H2O2  O2 + OH + OH–.

Гидроксильные радикалы OH– активно вступают в реакции с органическими соединениями, главным образом липидами, а также нуклеиновыми кислотами и белками. В результате образуются другие активные радикалы и перекиси. При этом реакция может приобрести цепной лавинообразный характер (рис. 5-6). Однако это происходит не всегда. Чрезмерной активации свободнорадикальных и перекисных реакций препятствуют факторы АОЗ клеток.

Рис. 5-6. Этапы СПОЛ.

Антиоксидантная защита клеток

В клетках протекают процессы и действуют факторы, которые ограничивают или даже прекращают свободнорадикальные и перекисные реакции, т.е. оказывают антиоксидантный эффект. Один из таких процессов — взаимодействие радикалов и гидроперекисей липидов между собой, что ведет к образованию «нерадикальных» соединений. Ведущую роль в системе АОЗ клеток играют механизмы ферментной, а также неферментной природы, главные из которых представлены в таблице 5-2 и на рисунке 5-7.

Таблица 5–2. Звенья антиоксидантной системы и ее некоторые факторы

Звенья Факторы Механизмы действия
Антикислородное Ретинол, каротиноиды, рибофлавин Уменьшение содержания O2 в клетке, например путем его повышенной утилизации, повышения сопряжения процессов окисления и фосфорилирования
Антирадикальное СОД, токоферолы, маннитол Перевод активных радикалов в «нерадикальные» соединения; «гашение» свободных радикалов органическими соединениями
Антиперекисное Глутатионпероксидазы, каталаза, серотонин Инактивация гидроперекисей липидов, например, при их восстановлении

Рис. 5-7. Уровни действия антиоксидантных факторов клетки.

Чрезмерная активация свободнорадикальных и перекисных реакций — это один из главных факторов необратимого повреждения мембран и ферментов клеток. Решающее значение при этом имеют изменения физико-химических свойств липидов и появление структурных дефектов мембран.

Нарушение характеристик липидов мембран ведет к изменениям конформации липопротеиновых и белковых комплексов и в связи с этим — к ингибированию активности ферментных систем.

Образование структурных дефектов в мембранах — т.н. простейших каналов (кластеров) — обусловливает существенное повышение их проницаемости, приводящее к неконтролироемому транспорту через них в клетки и из клеток в интерстиций органических и неорганических веществ.

Указанные процессы, в свою очередь, вызывают нарушения важных для жизнедеятельности клеток процессов — рецепции и передачи гуморальных воздействий, трансмембранного переноса ионов и молекул, возбудимости, генерации и проведения нервных импульсов, обмена веществ, межклеточных взаимодействий и др.

Накопление в мембране липидных гидроперекисей соровождается их объединением в мицеллы, создающие трансмембранные каналы проницаемости. По этим каналам возможен неконтролируемый ток катионов и других молекул как в клетку, так и из нее, что, как правило, фатально для клетки.

Увеличение образования продуктов СПОЛ и параллельно с этим — кластеров сопровождается фрагментацией мембран (этот процесс получил название детергентного действия продуктов СПОЛ) и приводит к гибели клетки.

Активация гидролаз

Cостав и состояние мембран могут модифицировать не только свободнорадикальные и липопероксидные процессы, но также и мембраносвязанные, свободные (солюбилизированные) и лизосомальные липазы, фосфолипазы и протеазы.

Под влиянием патогенных факторов активность этих ферментов и/или их содержание в клетке могут значительно повыситься (например, при развитии ацидоза, способствующего выходу ферментов из лизосом и их последующей активации). В результате гидролизу подвергаются фосфолипиды и белки мембран, а также ферменты. Это сопровождается значительным повышением проницаемости мембран и снижением кинетических свойств ферментов.

Детергентные эффекты амфифилов

В результате активации липопероксидных реакций и гидролаз (главным образом липаз и фосфолипаз) в клетке накапливаются гидроперекиси липидов, свободные жирные кислоты, фосфолипиды (например глицерофосфолипиды, фосфатидилхолины, фосфатидилэтаноламины, фосфатидилсерины). Эти соединения получили название амфифильных в связи с их способностью проникать и фиксироваться как в гидрофобной, так и в гидрофильной зоне мембран. Накопление в клетке амфифилов в большом количестве сопровождается массированным внедрением их в мембраны, что ведет к формированию обширных кластеров и микроразрывов в них.

Расстройства процесса репарации мембран

При воздействии повреждающих факторов репаративный ресинтез альтерированных или утраченных липидных, белковых, липопротеидных, гликопротеидных и других молекул мембран, а также их синтез de novo существенно подавляются. Эффективность восстановления мембран становится недостаточной. Это потенцирует степень и масштаб повреждения мембранного аппарата клеток.

Нарушения конформации макромолекул

Изменения нормальной конформации (пространственной структуры, формы) макромолекул белка, ЛП, гликопротеинов и других соединений приводят к значительным изменениям физико-химического состояния клеточных мембран и их рецепторов. Причинами этого являются расстройства энергообеспечения клеток; отклонения физико-химических параметров клетки от нормы (например, развитие ацидоза, гипер- или гипоосмии). В результате изменяется третичная и четвертичная структуры макромолекул, что нарушает их конформацию и функцию, в т.ч. снижает активность БАВ (ферментов, гормонов, цитокинов и др.).

Перерастяжение и разрыв мембран

Перерастяжение и разрыв мембран набухших клеток в связи с их гипергидратацией — важный механизм повреждения и гибели как органоидов, так и клетки в целом. Гипергидратация — следствие значительного увеличения осмотического и онкотического давления в клетках. Это, в свою очередь, обусловлено избытком в них гидрофильных молекул органических соединений (молочной и пировиноградной кислот, альбуминов, глюкозы и др.), а также ионов, накопившихся в связи с расстройствами метаболизма.

Дисбаланс ионов и воды

Дисбаланс ионов и воды в клетке, как правило, развивается вслед за или одновременно с расстройствами энергетического обеспечения и повреждением мембран и ферментов. В результате существенно изменяется трансмембранный перенос многих ионов. В наибольшей мере это относится к K+, Na+, Ca2+, Mg2+, Cl–, т.е. ионам, которые принимают участие в таких жизненно важных процессах, как возбуждение, проведение потенциалов действия (ПД), электромеханическое сопряжение и др.

Ионный дисбаланс характеризуется изменением соотношения отдельных ионов в цитозоле и нарушением трансмембранного соотношения ионов как по обе стороны плазмолеммы, так и внутриклеточных мембран.

Проявления ионного дисбаланса многообразны. Наиболее существенны для функционирования и самого существования клеток изменения ионного состава, определяемые разными мембранными АТФазами и дефектами мембран.

Катионы. Вследствие нарушения работы Na+,K+-АТФазы плазмолеммы в цитозоле клетки накопливается избыток Na+ и уменьшается содержание K+. При расстройстве Na+-Ca2+-ионообменного механизма плазмолеммы (обмен двух Na+, входящих в клетку, на один Ca2+, выходящий из нее), а также Ca2+-АТФаз, в цитозоле существенно увеличивается содержание Ca2+ (рис. 5-8).

Рис. 5-8. Направление градиентов и содержание отдельных ионов (на примере кардиомиоцитов).

Анионы. Нарушения трансмембранного распределения катионов сопровождаются изменением содержания в клетке и анионов Cl–, OH–, HCO3– и др. (рис. 5-9).

Рис. 5-9. Дисбаланс ионов и воды в клетке при ее повреждении.

Важные последствия ионного дисбаланса — это изменения объема клеток и клеточных органоидов (гипо- и гипергидратация), а также нарушения электрогенеза в возбудимых клеточных элементах [например, в кардиомиоцитах, нейронах, скелетных мышечных волокнах, гладкомышечных клетках (ГМК)].

Гипергидратация клеток. Основная причина гипергидратации — повышение содержания Na+ и Ca2+, а также органических веществ в поврежденных клетках. Это сопровождается увеличением в них осмотического давления и накоплением воды. Клетки при этом набухают, объем их увеличивается, что сочетается с растяжением и нередко микроразрывами цитолеммы и мембран органелл.

Гипогидратация клеток. Гипогидратация клеток наблюдается, например, при лихорадке, гипертермии, полиурии, ИБ (холере, брюшном тифе, дизентерии). Указанные состояния ведут к потере организмом воды, сопровождающейся выходом из клеток жидкости и растворенных в ней белков (в т.ч. ферментов), а также других органических и неорганических водорастворимых соединений.

Нарушения электрогенеза в виде изменений характеристик МП и ПД имеют существенное значение, поскольку они нередко бывают одним из важных признаков наличия и характера повреждения клеток. Примером могут служить изменения ЭКГ при повреждении клеток миокарда, электроэнцефалограммы при нарушении структуры и функций нейронов головного мозга, электромиограммы при изменениях в мышечных клетках. Патогенез такого рода повреждений возбудимых клеток приведен на рисунке 5-10.

Рис. 5-10. Изменения электрофизиологических свойств возбудимой клетки при ее повреждении.

Генетические нарушения

Повреждения генома и/или механизмов экспрессии генов, репликации и репарации ДНК, клеточного цикла — значимые механизмы альтерации, имеющие фатальные последствия. Эти повреждения играют существенную роль при малигнизации клеток и процессах онкогенеза. На рисунке 5-11 приведены основные изменения генетической программы клеток, происходящие под влиянием повреждающих факторов.

Рис. 5-11. Нарушения генетической программы и/или механизмов ее реализации при повреждении клетки.

Причинами повреждения генома клетки и ее гибели могут стать прямое или опосредованное действие на генетический аппарат патогенных агентов различного характера. Нарушения структуры ДНК и/или ее деградация часто выступают пусковым звеном гибели клетки. К наиболее значимым причинам повреждений ДНК относят:

 разрушение фрагментов ДНК при воздействии на нее сверхсильных патогенных агентов, чаще всего химического или физического характера (например, высоких доз ионизирующего излучения, алкилирующих агентов, свободных радикалов, гидроперекисей липидов);

 расщепление ДНК при значительной активации нуклеаз (предсуществующих или синтезирующихся de novo);

 деградация ДНК активированными трансферазами, что сопровождается разрывами межнуклеотидных связей.

Указанные и другие факторы запускают различные механизмы нарушения генетической информации, механизмов ее реализации или активации программы смерти клетки.

Механизмы нарушений в геноме. К числу наиболее существенных механизмов нарушения генетической информации клетки относят:

 мутации;

 неконтролируемую дерепрессию генов (например, онкогенов или генов апоптоза);

 подавление активности жизненно важных генов (например, программирующих синтез ферментов);

 трансфекцию (внедрение в геном чужеродной ДНК, например ДНК вируса герпеса или опухоли);

 нарушения репарации ДНК.

Ниже приведены отдельные последствия повреждения генома, имеющие наибольшее значение в патологии человека.

Ферментопатии (нарушения структуры и функции ферментов и ферментативного катализа. Это фатальным образом сказывается на всех сторонах жизнедеятельности клеток (например, многие из тысяч моногенных заболеваний — следствие дефекта генов, кодирующих структуру ферментов).

Нарушения клеточного цикла (дефекты даже одного из сотен факторов, регулирующих клеточный цикл, неизбежно приводят к расстройству пролиферации клеток, в т.ч. к бесконтрольному размножению поврежденной клетки и формированию малигнизированных клонов).

Активация онкогенов — ключевое звено канцерогенеза.

Неконтролируемая активация апоптоза (приводящая, например, к иммунодефицитным состояниям или гипотрофии тканей и органов).

Расстройства регуляции внутриклеточных процессов

Нарушения жизнедеятельности клетки могут быть результатом расстройств одного или нескольких уровней реализации регуляторных механизмов. Основные из них приведены на рисунке 5-12.

Рис. 5-12. Механизмы нарушения регуляции клетки при ее повреждении.

Межклеточные сигналы, реализуемые с участием БАВ информационного характера (гормоны, нейромедиаторы, цитокины, хемокины и др.) реализуют регуляторные эффекты после взаимодействия БАВ с клеточными рецепторами.

Причины искажения регуляторного сигнала многообразны. Наибольшее значение имеют изменения:

 чувствительности рецепторов;

 количества рецепторов;

 конформации рецепторных макромолекул;

 липидного окружения мембранных рецепторов.

Указанные отклонения могут существенно модифицировать характер клеточного ответа на регулирующий стимул. Так, накопление токсичных продуктов СПОЛ при ишемии миокарда изменяет физико-химические свойства мембран. Это сопровождается нарушением реакций сердца на норадреналин и ацетилхолин, воспринимающихся соответствующими рецепторами плазматической мембраны кардиомиоцитов.

Расстройства на уровне вторых посредников

На уровне внутриклеточных вторых посредников (мессенджеров) — циклических нуклеотидов: аденозинмонофосфата (цАМФ) и гуанозинмонофосфата (цГМФ) и других, образующихся в ответ на действие первых посредников — гормонов и нейромедиаторов, возможны многочисленные расстройства. Примером может служить нарушение формирования МП в кардиомиоцитах при накоплении в них избытка цАМФ. Это одна из возможных причин развития сердечных аритмий.

Нарушения ответа на сигнал

На уровне метаболических процессов, регулируемых вторыми посредниками или другими внутриклеточными факторами, также возможны многочисленные расстройства. Так, нарушение активации клеточных ферментов, например в связи с дефицитом цАМФ или цГМФ, может существенно изменить интенсивность метаболических реакций и как следствие — привести к расстройству жизнедеятельности клетки.

Типовые формы патологии, развивающиеся при повреждении клеток

Повреждение клеток характеризуется развитием разнообразных изменений не только в пораженных клетках, но и в других гистологических элементах, составляющих ткани, органы и их системы.

К типовым формам патологии клеток относят дистрофии, дисплазии, некроз, патологические формы апоптоза, нарушения отдельных субклеточных структур и компонентов.

Дистрофии

Клеточные дистрофии — нарушения обмена веществ, сопровождающиеся расстройством функций клеток, пластических процессов в них, а также структурными изменениями, ведущими к нарушению жизнедеятельности клеток.

Механизмы дистрофий разнообразны. К числу ведущих относят:

 синтез аномальных, в норме не встречающихся в клетке, веществ (например, белково-полисахаридного комплекса амилоида);

 избыточное превращение одних соединений в другие (например, жиров и углеводов в белки, углеводов в жиры);

 декомпозицию (фанероз) — распад субклеточных структур и/или веществ (например, белково-липидных комплексов мембран);

 инфильтрацию клеток и межклеточного вещества органическими и неорганическими соединениями (например, ЛПНП и Ca2+ клеток интимы артерий при атеросклерозе).

Виды клеточных дистрофий

Виды клеточных дистрофий приведены на рисунке 5-13.

Рис. 5-13. Виды дистрофий в зависимости от преимущественно нарушенного типа обмена веществ.

Основной критерий классификации клеточных дистрофий — преимущественное нарушение метаболизма отдельных классов веществ. Согласно этому, различают диспротеинозы (белковые дистрофии), липидозы (жировые дистрофии), диспигментозы (пигментные дистрофии), углеводные и минеральные дистрофии. Отдельную группу составляют тезаурисмозы (болезни накопления).

Диспротеинозы

Для белковых дистрофий характерно изменение физико-химических свойств клеточных белков и как следствие — нарушение их ферментативной и структурной функций. Различают зернистую, гиалиново-капельную и гидропическую дистрофии. Эти разновидности диспротеинозов — последовательные этапы нарушений обмена белков, приводящие к некрозу клеток.

Чаще диспротеинозы являются приобретенными (вторичными). Реже встречаются первичные (наследуемые и врожденные) их варианты. Обычно эти последние — результат ферментопатий и обусловлены нарушениями обмена аминокислот, например цистеина (цистиноз), фенилпировиноградной кислоты (фенилкетонурия), тирозина (тирозиноз) и некоторых других.

Липидозы

К липидам относят различные по химическому составу гидрофобные вещества (рис. 5-14).

Рис. 5-14. Виды липидов.

Для липидозов (жировых дистрофий) характерно увеличение содержания внутриклеточных липидов, появление липидов в клетках, где они в норме отсутствуют, а также образование липидов аномального химического состава.

Различают липидозы первичные (наблюдаются, как правило, при ферментопатиях: ганглиозидлипидоз, цереброзидлипидоз, сфингомиелинлипидоз и др.) и вторичные (вызванные различными патогенными факторами: этанолом, соединениями фосфора, четыреххлористым углеродом, некоторыми ЛС — цитостатиками, антибиотиками, барбитуратами и др.). Вторичные липидозы, подобно диспротеинозам, наиболее часто выявляются в клетках миокарда, печени, почек, мозга и носят соответствующие названия (жировая дистрофия сердца, печени, почек, мозга).

Углеводные дистрофии

Углеводные дистрофии характеризуются нарушениями обмена полисахаридов (гликогена, мукополисахаридов) и гликопротеинов (муцина, мукоидов).

Полисахариды. При нарушениях метаболизма полисахаридов в клетках можно наблюдать уменьшение содержания углеводов (например, гликогена при СД), отсутствие углеводов (агликогенозы) и накопление избытка углеводов (например, гликогенная инфильтрация клеток, гликогенозы).

Причинами этих дистрофий чаще всего являются эндокринопатии (например, инсулиновая недостаточность) и ферментопатии (отсутствие или низкая активность ферментов, принимающих участие в синтезе и распаде углеводов).

Гликопротеины. Углеводные дистрофии, связанные с нарушением метаболизма гликопротеинов, характеризуются, как правило, накоплением муцинов и мукоидов, имеющих слизистую консистенцию (в связи с этим их называют также слизистыми дистрофиями).

Вызывают углеводные дистпофии эндокринные расстройства (например, недостаточная продукция или низкая активность гормонов щитовидной железы) и прямое повреждение клеток различными патогенными факторами.

Д испигментозы

Клеточные пигменты (хромопротеиды) — это соединения, состоящие из белка и хромофора. Выделяют несколько групп хромопротеидов:

 гемоглобиногенные, или железозависимые (ферритин, гемосидерин, билирубин, гематоидин, гематин, порфирин);

 протеиногенные, или тирозиногенные (меланин, адренохром, пигменты охроноза и энтерохромаффинных клеток);

 липидогенные, или липопротеиногенные (липофусцин, гемофусцин, цероид, липохромы).

Виды диспигментозов

Пигментные дистрофии (диспигментозы) классифицируют в зависимости от их происхождения, механизма развития, структуры пигмента, проявлений и распространенности (таблица 5-3).

Таблица 5-3. Виды пигментных дистрофий

По происхождению
• Первичные (наследственные, врожденные).
• Вторичные, приобретенные (возникающие под действием патогенных агентов в постнатальном периоде).
По механизму развития
• Обусловленные дефектами ферментов (ферментопатиями) метаболизма пигмента.
• Связанные с изменением содержании и/или активности ферментов транспорта пигментов через мембраны клетки.
• Вызванные повреждением мембран клеток.
• Обусловленные накоплением избытка пигментов в фагоцитирующих клетках.
По структуре пигмента
• Гемоглобиногенные, железозависимые.
• Протеиногенные, тирозиногенные.
• Липидогенные, липопротеиногенные.
По проявлениям
• Появление в клетке пигмента, в норме в ней отсутствующего.
• Накопление избытка пигмента, образующегося в клетке в норме.
• Уменьшение количества пигмента, образующегося в клетке в норме.
По распространенности
• Местные (регионарные).
• Общие (распространенные, системные).

Гемоглобиногенные (железозависимые) диспигментозы: гемосидероз, гемохроматоз, гемомеланоз, порфирии, а также накопление избытка прямого билирубина в гепатоцитах. Большинство гемоглобиногенных пигментов относят к продуктам катаболизма Hb. Некоторые из них (ферритин, гемосидерин) образуются с участием железа, всасывающегося в кишечнике. Наиболее частыми из гемоглобиногенных диспигментозов являются: гемохроматоз и порфирия.

Протеиногенные (тирозиногенные) диспигментозы проявляются усилением (например, при меланозе и охронозе) или ослаблением (например, при альбинизме) пигментации тканей локального или общего характера продуктами метаболизма тирозина.

Липидогенные диспигментозы характеризуются увеличением количества в клетках пигментов липидного и липопротеидного характера (липофусцинозы).

Минеральные дистрофии

Из минеральных дистрофий наибольшее значение имеют нарушения обмена кальция, калия, железа, цинка, меди в виде отложения солей этих химических элементов (например, кальцинозы, сидерозы, отложение меди при гепатоцеребральной дистрофии).

Тезаурисмозы

Тезаурисмозы (болезни накопления) — накопление избытка различных веществ в клетках, что сопровождается нарушением их структуры и функции, а также интенсивности и характера метаболических и пластических клеточных процессов. Практически все тезаурисмозы — результат наследственных ферментопатий, передающихся, как правило, по аутосомно-рецессивному типу. В отдельные группы принято выделять болезни накопления: лизосомные и пероксисомные. В зависимости от типа накапливающихся веществ тезаурисмозы подразделяют на липидные (липидозы), гликогеновые (гликогенозы), аминокислотные, нуклеопротеиновые, мукополисахаридные (мукополисахаридозы), муколипидные (муколипидозы). Наиболее распространенные разновидности тезаурисмозов — липидные и гликогеновые.

Дисплазии

Дисплазии:
нарушения дифференцировки клеток,
сопровождающиеся стойкими изменениями ее структуры, метаболизма и функции,
что ведет к нарушению ее жизнедеятельности


Pages:     | 1 | 2 || 4 | 5 |   ...   | 19 |
 





<


 
2013 www.disus.ru - «Бесплатная научная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.