WWW.DISUS.RU

БЕСПЛАТНАЯ НАУЧНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 

Pages:     | 1 |   ...   | 3 | 4 ||

«информатика С. Бешенков, Н. Кузьмина, Е. Ракитина СИСТЕМАТИЧЕСКИЙ КУРС 11 класс ...»

-- [ Страница 5 ] --

• возможность автоматизации деятельности международ­
ных компаний, подразделения которых работают с раз­
личными план-счетами, валютами, с учетом различных
нормативных и правовых отношений.

Информационные основы управления 141

АСУ только предоставляет преимущества. Реализовать их — задача людей. А потому особое внимание при внедре­нии АСУ уделяется именно человеческому фактору. Любая из технических систем — лишь механизм для повышения эффективности управления, принятия правильных страте­гических и тактических решений на основе своевременной и достоверной информации, выдаваемой компьютером.

Управленческая деятельность во многом связана со сбо­ром, анализом, выработкой, передачей, хранением и преоб­разованием информации.

Своевременно и правильно обработанная информация становится важным производственным ресурсом.

Использование компьютерных информационных техно­логий на всех этапах управления способно повысить эффек­тивность и качество управления.

Автоматизированные системы управления (АСУ) — ком­плекс технических и программных средств, обеспечиваю­щий в тесном взаимодействии с отдельными специалистами или коллективами управление объектом в производствен­ной, научной или общественной сфере.

Основное преимущество АСУ перед традиционными мето­дами управления состоит в том, что для принятия необходи­мых решений управленческому персоналу предоставляется более полная, своевременная и достоверная информация в удобной для восприятия форме.

По функциям АСУ подразделяются на следующие виды:

• административно-организационные:

• системы управления предприятием (АСУП);

• отраслевые системы управления (ОАСУ);

• системы управления технологическими процессами (АСУТП):

  • гибкие производственные системы (ГПС);
  • системы подготовки производства (АСУПП);
  • системы контроля качества продукции (АСК);
  • системы управления станками с числовым програм­мным обеспечением (ЧПУ);

• интегрированные системы, объединяющие перечислен­
ные виды АСУ в различных комбинациях.

По результатам деятельности различают АСУ информа­ционные, информационно-советующие, управляющие, само­настраивающиеся, самообучающиеся.

Автоматизированная система управления предприятием (АСУП) — наиболее сложная как по структуре, так и по вы­полняемым функциям автоматизированная система управ­ления.

Основные принципы автоматизации управления предпри­ятием — комплексность и гибкость.

Принцип комплексности заключается в том, что АСУ обеспечивает полный цикл управления, начиная от подго­товки и планирования производства и заканчивая сбытом готовой продукции и формированием финансовой и бухгал­терской отчетности. Отчетность же, в свою очередь, через обратную связь замыкается на функцию планирования.

Принцип гибкости позволяет рассматривать АСУ не как пассивный инструмент ведения бизнеса, но как средство его совершенствования. АСУП, с одной стороны, должна гармо­нично учитывать сложившиеся на предприятии традиции, а с другой стороны — стимулировать его руководство и специ­алистов к переходу на новые технологии и методы работы.

Внедрение АСУП направлено на:

  • повышение эффективности принимаемых решений, осо­бенно в части оптимального использования всех видов ре­сурсов и потенциальных возможностей производства;
  • повышение производительности труда инженерно-техни­ческих и управленческих стуктур за счет выполнения основного объема расчетных, учетных и поисковых задач на ЭВМ.

Важные компоненты АСУ — аппаратное обеспечение, программное обеспечение, информационное обеспечение, математическое обеспечение.

Информационное обеспечение АСУ охватывает всю доку­ментацию (правовую, нормативную, техническую, конст­рукторскую, технологическую, учетную), представленную в электронном виде и необходимую для управления производ­ством, а также схемы ее движения.

Основными элементами АСУ являются автоматизирован­ные рабочие места специалистов, объединенные в локаль­ную корпоративную вычислительную сеть.

Автоматизированное рабочее место — рабочее место специалиста, оснащенное компьютером или комплексом специализированных устройств, соответствующим про-

граммным обеспечением, которые позволяют автоматизи­ровать часть выполняемых специалистом производственых операций.

Одна из основных целей автоматизации — возможность для каждого сотрудника, относящигося к любому подразде­лению, получения информации в то время и в той форме, которые ему необходимы.

Особое внимание при внедрении АСУ уделяется человече­скому фактору.

Любая из технических систем — лишь механизм для по­вышения эффективности управления, принятия правиль­ных стратегических и тактических решений на основе свое­временной и достоверной информации, выдаваемой компьютером. Этот механизм полезен только при правиль­ном, целесообразном использовании его человеком.

Задание 1

Многие школы сегодня внедряют автоматизированные системы управления. Это, например, системы автоматизированного со­ставления расписания или АРМ завуча. Если в вашей школе есть такие системы, выясните и опишите их назначение, состав, фун­кции, преимущества.

Задание 2

Автоматизация делопроизводства и документооборота — важ­ные подсистемы АСУП. Именно с них чаще всего и начинается разработка и внедрение автоматизированной системы управле­ния.



Обоснуйте, почему от эффективности функционирования этих подсистем зависит эфективность всей системы управления пред­приятием.

Задание 3

Представьте, что вы — руководитель небольшой хлебопекарни и хотите на своем предприятии внедрить АСУП. Для рабтников каких специальностей вы будете создавать АРМы? Какое техническое обеспечение вам для этого понадобит­ся? Какие из известных вам прикладных программ найдут себе

применение в этой системе? Какие информационные базы при­дется разработать? Какими методами вы будете определять на­правления основных информационных потоков? Какие основ­ные трудности вы предвидите?

28 марта 1979 года на атомной станции «Тримайл Айленд» произошла авария. Отказал крошечный клапан пневматической системы, это привело к прекращению цир­куляции воды в системе водяного охлаждения реактора, а потом и к неуправляемому разогреву урановой активной зоны реактора. Потребовалось несколько дней напряжен­нейшей работы, чтобы взять ситуацию под контроль.

Когда комиссия расследовала, почему авария, которую, казалось бы, несложно было устранить, едва не вылилась в трагедию, оказалось, что основной причиной были неправи­льные действия операторов. А произошло это потому, что АСУ станции была разработана без учета человеческих воз­можностей. В течение первых нескольких минут сработало 100-200 предупредительных аварийных сигналов: звенели зуммеры, включались и выключались насосы, отпирались и запирались вентили. В зале управления не утихала бурная деятельность множества людей. На операторов обрушилась такая лавина информации (показания дисплеев, предупре­дительные сигналы, данные распечаток и т. п.), что было со­вершенно невозможно выявить неисправность и правильно выбрать меры по ее устранению. Операторы просто не могли уследить за всем, что происходило — это было выше челове­ческих сил.

Урок, вынесенный из этой аварии, очевиден: пока конст­рукция технической системы (особенно автоматизирован­ной) не будет во всех деталях продумана так, чтобы все происходящее в ней было абсолютно понятно обслуживаю­щему персоналу, пока информация не будет представлена в форме, удобной для восприятия человеческим глазом и мозгом, а не машиной, любая неполадка в автоматизиро­ванной системе управления может сделать ее полностью не­управляемой.

Термин «АСУ» появился в середине 60-х годов. Первона­чально АСУ строились на базе высокопроизводительных (для своего времени) ЭВМ. Для их размещения и обеспече­ния работы создавались вычислительные центры (ВЦ), для которых необходимы были обученный персонал, специально оборудованные помещения, определенный микроклимат. При таких ВЦ создавались службы АСУ (иногда численно­стью до 200-300 человек). Обработка информации велась централизовано.

С появлением персональных ЭВМ АСУ стали создаваться на базе автоматизированных рабочих мест (АРМ), объеди­ненных в локальную вычислительную сеть (ЛВС).

В нашей стране разработка и внедрение АСУ во многие сферы производства широко проводились в 60-70-х годах. На предприятиях создавались вычислительные центры на базе больших ЭВМ (мэйнфреймов). Работали целые науч­но-исследовательские институты АСУ. В вузах создавались факультеты АСУ, призванные подготовить квалифициро­ванных специалистов для этой области. Выдвигалась даже идея создания Общегосударственной автоматизированной системы сбора и обработки информации для учета, планиро­вания и управления народным хозяйством. К сожалению, возможности техники и технологии не соответствовали в то время уровню решаемых задач. Идея АСУ опередила свое время. Но хорошие идеи все равно рано или поздно вопло­щаются в жизнь. Изменение названия (вместо АСУ сейчас чаще используют название «корпоративные системы управ­ления бизнес-процессами предприятия», но оно еще только приживается) обусловлено не изменением целей и функций АСУ, а скорее реализацией этих же целей на вычислитель­ной технике нового поколения — персональных компьюте­рах и компьютерных сетях. И если Интернет — это глобаль­ная сеть, предназначенная в основном для обеспечения «коммуникации без границ», то сети Интранет (Intranet) — техническая база АСУ нового поколения.

О значении АСУ в экономической жизни говорят следую­щие факты.

В странах с развитой экономикой в той или иной мере ав­томатизированы все предприятия, на которых работает свы­ше 500 человек.

Во многих странах на государственном уровне практиче­ски полностью автоматизировано управление в сфере нало­гового учета. Широко распространена автоматизация в бан­ковской системе. Высоки уровни автоматизации бухгалтерского учета и финансового анализа. Успехи транс­портного обслуживания также во многом обязаны автомати­зации управления.

Сегодня невозможно производство без полной автомати­зации управления технологическими процессами в отрас­лях, связанных с современными «высокими технологиями». Это, в частности, относится к производству компьютеров, космической и робототехники, синтезу новых материалов и т. п.

§ 3.4. Самоуправляющиеся системы

У информатики как науки счастливая судьба — многие ее теоретические разработки сразу же внедряются в практику и получают широкое распространение. Таковыми являются ме­тоды кодирования информации и информационно-поисковые системы, методы автоматической обработки информации и системы искусственного интеллекта. АСУ — это также при­мер практического применения сразу многих достижений те­оретической информатики. Но у любой науки есть сферы перспективных теоретических исследований, часто их назы­вают фундаментальными исследованиями. Эти исследования проводятся не для того, чтобы результаты сразу же реализо-вывать в виде какого-нибудь нового устройство или способа деятельности, а для того, чтобы познать новое.

Человек очень любознателен, и больше всего его интере­суют вопросы: «Как устроен этот мир?», «Почему это проис­ходит именно так?», «Что лежит в основе наших поступ­ков?». Вопросы, о которых пойдет речь в этом и следующих параграфах, относятся к числу фундаментальных исследова­ний кибернетики и информатики. Проблемы самоуправляю­щихся, устойчивых, самоорганизующихся систем занимают сейчас умы многих исследователей.

Стоит отметить, что нередко решение сугубо теоретиче­ских фундаментальных проблем оказывалось крайне необ­ходимым и полезным для решения задач практических.

Сложные технические системы могут быть самонастраи­вающимися, самоорганизующимися, самообучающимися, но для всех них характерно наличие более или менее авто­номной управляющей системы — субъекта управления.

Является ли субъект необходимым компонентом управле­ния? Существуют различные точки зрения.

Пример. Гениальный русский писатель Лев Толстой, описывая «стиль управления» Кутузова во время Бородинской бит­вы, исходил из того, что все события разворачивались в определенной мере сами собой и роль главнокомандующе­го сводилось к тому, чтобы не мешать общему течению событий. Напротив, Наполеон все время активно влиял на события и, в конечном счете, проиграл войну.

Пример. Бактерия попадает в среду, содержащую ядовитый для нее пенициллин. В ответ она начинает выделять особое вещество — фермент пеницелиазу, который его разру­шает. Как только бактерия разрушит весь пенициллин, синтез фермента прекратится.

Пример. Человек начинает бег. Пульс у него немедленно учаща­ется, в результате снабжение мышц кислородом увели­чивается и они получают больше энергии для своей рабо­ты.

Пример. Особое значение в биологии имеют особый вид реак­ции — гомеостаз, поддерживающий постоянство внут­ренней среды организма, например, температуру. Скорость различных физиологических процессов в рас­тительном мире зависит от температуры: обычно ско­рость удваивается при каждом повышении температуры на 10 СС. При температуре замерзания воды процессы жизнедеятельности замирают, а с повышением темпера­туры идут быстрее. Когда достигается некоторая крити­ческая точка, скорость снова падает, так как начинается распад некоторых веществ, а при дальнейшем повыше­нии температуры организм погибает. Большинство растений и животных относятся к числу холоднокровных и температура их тела близка к темпе­ратуре окружающей среды. По мере снижения темпера­туры активность их падает. Птицы и млекопитающие способны поддерживать температуру тела на постоянном уровне (35-38 °С) независимо от температуры окружаю-

148

Глава 3

щей среды. Терморегуляция осуществляется на основе принципа обратной связи. Если температура тела снижа­ется, то выработка тепла возрастает, например, за счет дрожи. Уменьшаются теплопотери, например, путем уменьшения циркуляции крови в сосудах, лежащих не­посредственно под кожей. Если температура тела повы­шается, то возрастает отдача тепла, например, в виде пота.

Пример. Как известно, в образовании этноса существенную роль играет принцип комплиментарности, заключающийся в неосознанной симпатии к одним людям и антипатии к другим. Например, викинги не брали в поход тех, кого считали ненадежными, трусливыми, сварливыми или недостаточно свирепыми. Все это было очень важно, ибо при военных действиях на каждого человека должна была пасть максимальная нагрузка и ответственность за свою жизнь и жизнь товарищей.

Эти и другие примеры наводят на мысль, что управление в ряде случаев может осуществляться без присутствия субъ­екта управления — автономной (не относящейся к объекту управления) управляющей системы. В этом случае возника­ют вопросы:

  • Каков механизм самоуправления, в чем его отличие от «традиционного» управления?
  • Каким образом задается и поддерживается цель управле­ния, коль скоро в этом не участвует субъект?

Механизм самоуправления существенным образом отли­чается от механизма управления, представленного на схеме из § 3.1. При самоуправлении элементы системы воздейст­вуют друг на друга, стремясь стать субъектами управления. При этом возможны следующие ситуации:

  • воздействие одного из элементов становится доминирую­щим и он становится «обычным» субъектом управления;
  • элементы уничтожают друг друга и, возможно, всю систе­му;
  • цели, преследуемые отдельными элементами системы, корректируются и наступает определенное динамическое равновесие.

Анализ последней ситуации приводит к мысли, что при самоуправлении глобальные, перспективные, стратегиче­ские цели могут быть поставлены, но они не могут быть реа­лизованы, поскольку длительное «сохранение» таких целей может «отслеживаться» только управляющей системой (субъектом управления). Тогда цели функционирования от-

дельных элементов системы подчиняются общей цели. В процессе самоуправления, при достижении равновесия, как правило, происходит понижения уровня целей до тактиче­ских, иногда даже - сиюминутных.

Пример Предстаете себе компанию друзей, которая решила вмес­те провести свободное время. До этого решения у каждого могли быть свои цели. Одному хотелось пойти в спортзал, другому — прочитать интересную статью в новом журна­ле и так далее. Как будет развиваться ситуация в том слу­чае, когда в компании есть признанный лидер, и в том, когда такового нет, вы можете предположить сами.

Следует отметить, что управление отличается от взаимо­действия тем, что в процессе управления реализуются ка­кие-либо цели. В этом смысле притяжение планет к Солнцу является взаимодействием, а не управлением, поскольку здесь нет явно выделенной цели. С другой стороны, повыше­ние пульса у бегущего человека трудно объяснить каким-ли­бо прямым взаимодействием, но зато здесь можно выделить определенную цель — сохранение жизни.

В случае отсутствия субъекта управления будет правиль­нее говорить не о «достижении цели», а о «преследовании цели», поскольку преследовать цель можно как осознанно (при наличие субъекта), так и неосознанно (когда речь идет о самоуправлении). В дальнейшем, во избежании путаницы, мы будем говорить о достижении цели только по отноше­нию к субъекту управления, а преследование цели — по от­ношению к самоуправлению.

Таким образом, процесс самоуправления описывается иной моделью, чем процесс управления, в котором участву­ет субъект. Основные моменты формализации, лежащие в основе модели самоуправления, следующие:

  • элементы объекта управления оказывают управляющие воздействия на другие элементы объекта, то есть распре­деляют между собой функции субъекта управления;
  • в процессе самоуправления цели элементов (как субъек­тов управления) могут быть скорректированы;
  • управляющие воздействия отдельного элемента определя­ются той информационной моделью всей системы управ­ления, которая у него сложилась;
  • информационные модели у различных элементов могут не совпадать друг с другом.

Общая схема самоуправляющейся системы изображена на рис. 3.4.1.

Рис. 3.4.1

Общая схема

самоуправляемой

системы

Примечание. Механизм самоуправления, согласно Н. Ви­неру, может быть объяснен на основе понятия информации, циркулирующей в системе. В данной схеме понятие инфор­мации конкретизировано до понятия информационной моде­ли: в основе механизма самоуправления лежит информаци­онная модель, в соответствии с которой живое существо или созданный человеком механизм осуществляет взаимодейст­вие с системой.

Пример. В человеческом обществе понятие «преследование цели» близко к понятию мотива. Существуют различные пси­хологический модели человеческих мотивов. По Адаму Смиту, проводившему исследования в начале XIX века на английских предприятиях, человек всегда стремится улучшить свое экономическое положение. По Лоуренсу и Ларошу, люди стремятся повторять то по­ведение, которое уже приводило к ожидаемому результа­ту.

По Маслоу, человек стремится удовлетворить потребно­сти в строгой иерархической последовательности: физио­логические потребности —> потребности безопасности и защищенности —> социальные потребности —> потребно­сти уважения —> потребности самовыражения. По МакКеланду, потребности имеют три основных со­ставляющих: власть, успех и причастность. По Вруму, мотивация складывается из достижения ожи­даемых результатов, вознаграждения, ценности послед­него.

Существует и другая, не менее обоснованная точка зре­ния на то, является ли субъект необходимым компонентом управления. Заключается она в том, что самоуправляю­щаяся система является не более чем абстрактной схемой, более или менее приближенной к действительности. В реа­льности же во всяких самоуправляющихся системах можно выявить субъект управления, возможно, скрытый.

Пример. Считается, что рынок является самоуправляющейся сис­темой. Послушаем, что говорит по этому поводу Н. Ви­нер. «...Во многих странах распространено мнение, при­знанное в Соединенных штатах официальным догматом, что свободная конкуренция является гомеостатическим процессом, то есть что на вольном рынке эгоизм торгов­цев, каждый из которых стремиться продать как можно дороже и купить как можно дешевле, в конце концов приведет к устойчивой динамике цен и будет способство­вать наибольшему общественному благу. Это мнение связано с очень «утешительным» воззрением, что част­ный предприниматель, стремясь обеспечить свою собст­венную выгоду, является в некотором роде обществен­ным благодетелем и поэтому заслуживает больших наград, которыми общество его осыпает. К сожалению, факты говорят против этой простодушной теории. Ры­нок — игра, находящая свое подобие в семейной игре под названием «Монополия». Она строго подчинена тео­рии игр, которую разработали фон Нейман и Моргенш-терн...Это рыночная игра, в которую играют вполне ра­зумные, но совершенно беззастенчивые дельцы... Побуждаемые своей собственной алчностью, отдельные игроки образуют коалиции; но эти коалиции обычно не устанавливаются каким-нибудь одним определенным об­разом и обычно кончаются столпотворением измен, ре­негатства и обманов. Это точная картина высшей дело­вой жизни и тесно связанной с ней политической, дипломатической и военной жизни. Даже самого блестя­щего маклера ждет разорение. Но, допустим, что макле­рам это надоело и они согласились жить в мире между собой. Тогда награда достанется тому, кто, выбрав удач­ный момент, нарушит соглашение и предаст своих парт­неров...» (Н.Винер. Кибернетика/ Русск. перевод. М.: Наука, 1983, с. 240-241). В реальных системах, близких к самоуправляющимся, наблюдаются явления, делающие их крайне неустойчивы­ми. Уже давно замечено, что значения многих параметров самоуправляющихся систем подвержены более или менее значительным колебаниям, циклам.

Пример. В развитии экономики выявлены различные циклы, со­стоящие из периода подъема и периода спада, названные именами их первооткрывателей-экономистов. Выстроив циклы по увеличению длительности, заметим, что их пе­риоды примерно удваиваются: цикл Китчина (3-4 года), цикл Жюглара (6-8 лет), цикл Лабруса (10-12 лет), цикл Кузнеца (20-24 года), цикл Кондратьева (40-60 лет) и, наконец, вековая тенденция. Применительно к Европе отмечены четыре последовате­льных цикла Кондратьева: [1790 (1810-1817) 1844-1855], [1850 (1870-1875) 1890-1896], [1890 (1914-1920) 1940], [1940 (1969-1972) 1980]. Первая и последняя даты каждого из этих циклов отмечают нача­ло подъема и окончание спада. Дата в круглых скобках отмечает кульминационный момент, точку кризиса, где начинается нисходящая ветвь цикла (разумеется, при­ближенно). Аналогично отмечены четыре последователь­ных вековых цикла: [1250 (1350) 1507-1510], [1510 (1650) 1733-1743], [1740 (1817) 1896], [1896 (1974?)...]. Как и у любого другого цикла, определение исходной точки оказывается довольно приблизительным, прини­мая во внимание плавные очертания волны. От года к году вековая тенденция едва ощутима, но как только одно столетие сменяет другое, она оказывается важней­шим действующим лицом.

Поскольку всякая система стремится к устойчивому со­стоянию, неустойчивое состояние самоуправляющейся сис­темы может разрешиться следующим образом:

  • переходом к традиционной системе управления, рассмот­ренной в § 3.1;
  • разрушением системы;
  • переходом к принципиально новым (для даной системы) формам управления.

Третья возможность будет подробно рассмотрена в следу­ющих параграфах. Что касается первых двух возможностей, то они исследованы достаточно подробно.

Пример. В художественной культуре существуют очень яркие об­разы разрушения самоуправляющихся систем. Одним из них является роман-антиутопия лауреата но­белевской премии У. Голдинга «Повелитель мух» и сня­тый по нему классический фильм. В нем показано, как сотня нормальных детей, попавших без взрослых на тро­пический остров, решает воспроизвести политический строй «как у взрослых» — с выборами парламента, пре­зидента, то есть через создание самоуправляемой систе­мы. В конечном итоге эта система рухнула и образова­лась жесткая диктатура.

Другим, столь же ярким примером является известный фильм Ф. Феллини «Репетиция оркестра». Восстав про­тив дирижера, оркестранты создали общий хаос, кото­рый привел к разрушению и гибели. Только вернувшись к музыке и вспомнив про дирижера, они спасли себя.

Самоуправление — это способ управления объектом, ког­да нет автономной от него управляющей системы.

Цель самоуправляющейся системы формируется внутри нее, а не задается извне.

Управление может осуществляться без управляющей сис­темы — субъекта управления, независимого от управляемо­го объекта, в следующих случаях:

• один из элементов объекта управления оказывает управ­
ляющее воздействие на другие элементы, то есть берет на
себя функции субъекта управления;

' • в процессе самоуправления цели отдельных элементов (как субъектов управления) корректируются в процессе взаимодействия с другими элементами.

В последнем случае уровень целей, стоящих перед объек­том в целом, понижается.

Механизм самоуправления, согласно Н. Винеру, может быть объяснен на основе понятия обмена информацией, цир­кулирующей в системе, между элементами системы.

В основе механизма самоуправления лежат информаци­онные модели, на основе которых живое существо или со­зданный человеком механизм (как элемент системы) осуще­ствляет взаимодействие с системой в целом и в ее рамках с внешней средой.

Модель самоуправления основывается на следующих предположениях:

• элементы объекта управления оказывают управляющие
воздействия на другие элементы, то есть распределяют
между собой функции субъекта управления;

• у каждого элемента системы есть индивидуальные цель и
модель ситуации, причем информационные модели у раз­
личных элементов могут не совпадать друг с другом.

  • в процессе самоуправления цели элементов (как субъек­тов управления) могут быть скорректированы и, как пра­вило, корректируются в процессе взаимодействия;
  • управляющие воздействия отдельного элемента определя­ются той информационной моделью всей системы управ­ления, которая у него сложилась.

В реальных системах, близких к самоуправляющимся, значения многих параметров подвержены более или менее значительным колебаниям и периодически возникающим сотояниям неустойчивости.

Поскольку всякая система стремится к стабильности, не­устойчивое состояние самоуправляющейся системы может привести к:

  • переходу к традиционной системе управления;
  • разрушению системы;
  • переходу к принципиально новым (для данной системы) формам управления.





Задание 1

Компьютер является очень сложной информационной системой, включающей в себя различные подсистемы. Какие информаци­онные подсистемы компьютера можно отнести к самоуправляю­щимся? Ответ обоснуйте.

Задание 2

Приведите примеры самоуправляющихся систем в природе, тех­нике, обществе.

Задание 3

Какие из следующих систем являются самоуправляющимися:

а) живой организм;

б) автопилот самолета;

в) робот;

г) компьютер;

д) человеческое общество?

Задание 4

Сформулируйте основные отличия управляемых и самоуправля­ющихся систем.

Задание 5

В разных ситуациях коллектив вашего класса можно рассматри­вать как управляемую или как самоуправляющуюся систему. Определите для этих двух случаев, в чем разница между целями, которые преследуются, и целями, которые могут быть достигну­ты. Приведите примеры целей того и другого типа. Какое «функционирование» данной системы — управляемое или самоуправляющееся — более эффективно для достижения каж­дой из предложенных вами целей?

Задание 6

Педставьте с помощью какой-нибудь программы деловой графи­ки (например, Мастера диаграмм) данные, приведенные в при­мере об экономических циклах. Проанализируйте, совпадают ли периоды экономического спада с известными вам исторически­ми событиями.

Как известно, в живой природе и в человеческом обще­стве многие процессы имеют циклическую природу. Напри­мер, солнечная активность имеет период колебания в 11 лет. Иногда эти циклы связывают между собой, например, пери­одичность социальных катаклизмов объясняются периодич­ностью некоторых астрономических явлений. Правомерно ли подобное сопоставление?

В пользу идеи о самоорганизации материи (как, впрочем, и в пользу ее отрицания) можно привести множество приме­ров.

Наглядно процесс самоорганизации можно продемонст­рировать с помощью так называемых «клеточных автома­тов», наиболее известным примером которых является игра «Жизнь», программу которой вы можете составить и сами.

Представим себе поле, разбитое на клетки. Для простоты возьмем поле небольшого размера, например 5x5 клеток.

Предположим, что каждая клетка может находиться в од­ном из двух состояний: быть закрашенной или нет.

Пусть в начальный момент времени половина клеток была закрашена, причем эти клетки случайным образом распределены по всему полю (рис. 3.4.2 о). Предположим далее, что в некоторый момент времени клетка изменяет свое состояние на противоположное, если большинство кле­ток из ее непосредственного окружения составляют клетки альтернативного типа и, напротив, она остается такой же какой и была, если в ее окружении преобладают, или даже не составляют меньшинства, клетки того же типа, что и у нее. Повторяя этот процесс снова и снова, можно приди к некоторой структуре, которая уже не будет подвергаться да­льнейшим изменениям. В данном примере, это уже происхо­дитв четвертом «поколении» клеток (рис. 3.4.2 г).

Рис. 3.4.2. Пример развития колонии случайно распределенных клеток в игре «Жизнь

Происходит это потому, что клетки в ходе игры «инфор­мируют» друг друга о своем состоянии и реагируют на эту информацию в соответствие с установленными правилами.

В связи с эти возникает чрезвычайно важный вопрос. Предопределен ли исход самоорганизующегося процесса и можно ли в принципе предугадать итоговый результат?

В самоорганизующихся системах, особенно на ранних этапах эволюции, возникают ситуации неустойчивого состо­яния системы, от которых развитие может пойти в различ­ных направлениях в зависимости от случайных факторов.

Например, в приведенной выше модели из закрашенных и не закрашенных клеток можно выделить объективную за­кономерность — разноименные клетки «притягиваются» друг к другу. Однако, даже несмотря на объективный харак­тер этой закономерности в каждый конкретный момент вре­мени существует альтернатива притяжения клеток А и Б, либо, скажем, клеток А и С. В результате образуется либо

устойчивая пара АВ, либо устойчивая пара АС, что, в свою очередь, может привести к развитию системы по одной из двух непересекающихся линий.

В этом плане поучительным является анализ многих ис­торических событий: являются ли они исторически неиз­бежными или определяются действиями случайных (или це­ленаправленных) сил, приложенных к системе в точке неустойчивого состояния.

Как правило, «исторически неизбежные» события всегда имеют альтернативу, и какая из них осуществится — во многом дело случая или личностного фактора. Человек с во­левыми качествами может самым решительным образом влиять на дальнейшее развитие системы, независимо от имеющихся в его распоряжении средств, если его усилия бу­дут приложены в нужном месте и в нужное время.

§ 3.5. Устойчивость систем с позиций управления

В нашем восприятии мира представления об устойчиво­сти носят основополагающий характер. Человек может изу­чать и работать с теми объектами, которые ощутимо сохра­няются во времени или повторяются. Без наличия определенной устойчивости не может существовать созна­ние, да и вообще живой организм.

Как вы знаете, любой объект можно рассматривать с точ­ки зрения его внешнего вида, структуры и поведения. Ока­зывается, именно структура объекта в наибольшей степени «отвечает» за его устойчивость. Любой объект можно рас­сматривать как систему, а потому необходимо определить, что же такое устойчивость систем.

Считается, что данная система устойчива, или структур­но устойчива, если при достаточно малых изменениях в ее структуре поведение системы становится в некотором смыс­ле аналогичным поведению исходной системы. Разумеется, в каждом конкретном случае мы должны точно определить, что подразумевается под выражением «достаточно малые» и «аналогично».

Пример. Солнечная система, является устойчивой системой. Эта устойчивость объясняется доминирующим действием Солнца, подавляющим взаимное притяжение планет. Вместе с тем, это действие позволяет планетам двигать­ся. Если бы притяжение было бы очень сильным, плане­ты бы просто бы упали на Солнце.

Предположим теперь, что мы имеем систему притягива­ющихся друг к другу планет без учета притяжения Солнца. В простейшем случае, когда у нас только три планеты, мы приходим к знаменитой и очень сложной задаче «трех тел»: как будет вести себя система из трех тел, между которыми существует сила притяжения, об­ратно пропорциональная квадрату расстояния между ними? Оказывается — очень непросто, и до конца эта за­дача не решена до сих пор.

Пример. Другим астрономическим примером служит внутренняя устойчивость звезды. Она обеспечивается взаимодейст­вием двух противоположных процессов: сжатия вещест­ва под влиянием гравитации и его расширения за счет кинетической энергии, приобретенной в ядерных реак­циях. Сжатие повышает плотность и температуру, что ведет к усилению термоядерной реакции. Полученная при этом кинетическая энергия вещества ведет к расши­рению вещества, а, значит, к понижению температуры и плотности. Тогда уменьшается интенсивность термо­ядерных реакций и гравитационные силы сжимают ве­щество. Устойчивость звезды реализуется в виде слож­ных колебаний.

Пример. Для исследования проблем устойчивости известный спе­циалист по кибернетике У.-Р. Эшби создал модель слож­ной системы — гомеостат, состоящей всего из четырех блоков, связанных между собой определенными связями (рис. 3.5.1). В каждом из них имелся поворачивающий­ся под действием электрического тока магнит, положе­ние которого влияло на величину электрического тока, подаваемого на другие блоки. Когда включали эту систе­му, все магниты начинали поворачиваться под действи­ем токов от других блоков. Эти движения изменяли ве­личину протекающего через магниты тока, который в свою очередь изменял движение магнитов. При этом могло быть два случая: либо после некоторого переходного процесса все электромагниты оказались в некотором устойчивом состоянии и движение прекраща­лось, либо система не находила устойчивого состояния и один из электромагнитов выходил за пределы нормаль­ного отклонения. В схеме в этом случае происходили случайные переключения, и поиски равновесия возоб-

Рис. 3.5.1. Схема гомеостата У.-Р. Эшби

новлялись. В конце концов после нескольких случайных переключений система самостоятельно находила состоя­ние равновесия.

Различные внешние возмущающие воздействия на гоме-остат — перестановки упоров, изменение связей, неболь­шие поломки — не нарушали его способности перехо­дить в устойчивое состояние.

Интересна оценка Н. Винера результатов этих экспери­ментов: «Я полагаю, что блестящая идея Эшби о целе­устремленном механизме, добивающемся своих целей через процесс научения, является не только одним из крупных философских достижений современности, но также ведет к весьма полезным техническим выводам в решении задач автоматизации. Мы не только можем придавать целевую направленность машине, но в подав­ляющем большинстве случаев машина, сконструирован­ная для того, чтобы избегать аварийных ситуаций, будет отыскиввать цели, которые она может осуществить».

При изучении устойчивости динамических систем очень важным является понятие аттрактора (to attract — притя­гивать), т. е. такого состояния динамической системы, к ко­торому она стремится, «притягивается». Это состояние мо­жет быть описано множеством, которое также называют аттрактором.

Пример. Простым примером динамической системы, иллюстри­рующей понятие аттрактора, является маятник. Обыч­ный движущийся маятник под действием сил трения в конце концов останавливается в точке, которая и есть в данном случае аттрактор, поскольку именно эта точка в процессе движения «притянула к себе» маятник. Если описать движение маятника в прямоугольной сис­теме координат, где по одной оси откладывается угол от­клонения маятника от вертикали, а по другой — ско­рость изменения этого угла (в математике это называется фазовой плоскостью), то получим постепен­ное приближение маятника к аттрактору — началу ко­ординат (рис. 3.5.2).

Рис. 3.5.2

Движение обычного маятника

::>°л. ->

Пример. По другому ведет себя динамическая система, состоящая из часового механизма, маятника и груза на цепочке. Если раскачать маятник сильным толчком, то он начнет сильно раскачиваться, замедляясь затем до некоторого стабильного режима колебаний. На фазовой кривой этот режим изображается окружностью, которая в данном случае и является аттрактором (рис. 3.5.3).

Рис. 3.5.3

Движение маятника часов

Управляющие воздействия должны, с одной стороны, обеспечивать достижение поставленной цели, с другой — не нарушать относительной устойчивости системы, если система является изначально устойчивой. Если же напротив, система изначально является неустойчивой (например, государство в момент кризиса), то управление с необходимостью должно привести систему к относительно устойчивому состоянию.

И системы, управляемые субъектом, и самоуправляющие­ся системы могут быть устойчивыми или неустойчивыми.

Устойчивость системы управления может быть достигну­та разными очень разными путями, иногда очень простыми и остроумными.

Пример. Известно, что на военном флоте с давних времен устные команды и распоряжения, дословно повторяются теми, к кому они относятся. Например, офицер командует: «поднять якорь», а матрос отвечает «есть поднять якорь». Этим простым приемом достигается значитель­ная надёжность в управлении сложной системой — ко­раблем. При шуме ветра и волн матрос мог неправильно понять приказ, и его дублирование позволяло офицеру это проконтролировать.

По-видимому, самым эффективным средством повыше­ния устойчивости управляемых и самоуправляющихся сис­тем — это усиление влияния субъекта управления.

Пример. Как известно, в 1929 году в США и многих странах Запад­ной Европы разразился глубочайший экономический кри­зис, получивший название Великой депрессии. Решающая роль в его преодолении принадлежала государству (субъ­екту управления). Например, военные расходы правитель­ства США в 1941 году увеличились на 105% (по сравне­нию с 1940 г.), в 1942 году - на 175%, а в 1943 году еще на 50%. В 1944 году расходы правительства США даже с поправкой на рост цен были в 6,5 раза выше, чем в 1940 году. Именно военные расходы встряхнули экономику США и вывели ее из трясины Великой депрессии.

Если цели управления и управляющие воздействия субъ­екта управления хорошо согласованы, состояния неустойчи­вости системы практически не возникают, поскольку субъ­ект, как правило, с помощью обратных связей оперативно реагирует на первые признаки неустойчивости и стабилизи­рует систему. Иное дело самоуправляющаяся система или система, в которой субъект управления фактически не вы­полняет своих управленческих функций. В таких системах часто возникают кризисные ситуации. С точки зрения тра­диционной схемы управления эти состояния крайне нежела­тельны. Но существует и такая точка зрения, что в кризисах заложен эффективный инструмент управления.

Фундаментальной значение в этом случае приобретают так называемые точки бифуркации (от французского bifurcation — раздвоение), то есть такие точки, в которых система стано­вится неустойчивой и ее дальнейшее развитие возможно в разных направлениях в зависимости от случайных факторов.

Пример. Пусть к балке, изображенной на рисунке 3.5.4. прило­жена переменная сила F. Какое-то время балка нахо­дится в устойчивом состоянии, а затем, при некотором значении F0 прогибается. При этом, в какую сторону она прогнется — вправо или влево — зависит от случай­ных факторов. Значение силы F0 и определяет точку би­фуркации. Возможное развитие системы показано на графике.

Рис. 3.5.4. Прогибание балки под воздействием силы

Как свойство точек бифуркации используется в процессе управления? Предположим, что существует субъект, кото­рый поставил перед собой цель прогнуть балку в определен­ную сторону.

Будем считать, что балка является достаточно прочной и прямое управляющее воздействие, необходимое для изгиба­ния балки является очень большим и, возможно, недости­жимым для субъекта.

Однако, зная свойства точек бифуркации, можно карди­нально поменять стратегию управления. Можно, используя тот факт, что на балку действует сила F, в точке бифурка­ции FQ, подействовать на нее малой силой и добиться желае­мого результата.

Пример. Управление с использованием так называемых малых резонансных воздействий в точках бифуркации известно очень давно. Как свидетельствует история, рядом с вла­стным лицом, не отличающимся умом или сдержанно­стью, всегда находится некто, кто в критические момен­ты (то есть точки бифуркации) дает ему советы, направляя его волю в определенную сторону. История сохранила для нас имена многих таких людей: шут Шико при французском короле Карле IX (по версии А. Дюма), Э. И. Бирон при русской императрице Анне Иоанновне, философ Сенека при римском императоре Нероне и др.

Управление через малые резонансные воздействия в неу­стойчивых ситуациях может быть более эффективным, чем директивное (авторитарное) и демократическое (коллектив­ное) управление. В социальных системах тому немало под­тверждений. Возможно, поиски возможности реализации такого рода управления в технических системах приведут к интересным открытиям.

Система называется структурно устойчивой, если при до­статочно малых изменениях в ее структуре поведение систе­мы становится в некотором смысле аналогичным поведению исходной системы.

При изучении устойчивости динамической системы очень важным является понятие аттрактора — такого состояния системы, к которому она стремится, «притягивается». Это состояние может быть описано множеством, которое также называют аттрактором.

Понятие аттрактора является обобщением понятия рав­новесия.

Фундаментальное значение в изучении поведения систе­мы и ее устойчивости имеют точки бифуркации, то есть та­кие точки, в которых система становится неустойчивой и направление ее дальнейшего развития зависит от случайных факторов.

Задание 1

Приведите примеры устойчивых и неустойчивых систем, извест­ных вам из курсов физики, химии, биологии.

Задание 2

Определите, какие факторы (внутренние и внешние) могут вли­ять на устойчивость системы. Может ли управление быть одним из таких факторов?

Задание 3

Разработайте схему управления транспортным потоком после выпадения обильных снегопадов, приводящую транспортную систему к стабильному работоспособному состоянию.

Задание 4

Определите, являются ли следующие системы устойчивыми:

а) метроном;

б) экосистема в пруду для разведения рыбы;

в) стая обезьян;

г) система управления железнодорожным транспортом;

д) система образования.

(Cffi вопрос-проблема

1. Как следует из доклада ООН о развитии человечества
за 1998 год, три самых богатых человека в мире имеют сово­
купное личное состояние, превышающее валовой продукт
48 наименее развитых стран, 225 самых богатых людей пла­
неты имеют совокупное состояние более чем 1 трл долларов,
а 3/5 из 4,4 млрд жителей развивающихся стран лишены
канализации, 1/3 — чистой воды, 1/5 — медицинского об­
служивания. Американцы тратят на косметику 8 млрд дол­
ларов в год. По оценкам ООН, 6 млрд. долларов хвалило бы
для того, чтобы дать всем детям мира начальное образова­
ние. Европейцы съедают мороженого на 11 млрд долларов в
год, хотя 9 млрд долларов хватило бы на то, чтобы обеспе­
чить чистой водой и надежной канализацией всех нуждаю­
щихся в мире. Американцы и европейцы тратят 17 млрд
долларов на корм для домашних животных, но 13 млрд хва­
тило бы, чтобы обеспечить элементарную медицинскую по­
мощь всех нуждающихся по всему миру.

Можно ли такую цивилизацию считать устойчивой систе­мой? Каковы возможные перспективы её развития?

2. Чем, по вашему, является массовая культура — искус­
ством или инструментом управления?

Как показали исследования американского экономиста Д. Стиглера (Нобелевская премия по экономике 1982 года), в самоуправляемых системах большинство прогнозов оказы­ваются неточными, а решения принимаемые на их основе — неэффективными. Например, ни одно из постановлений пра­вительства США, которое в течении ряда лет пыталась регу­лировать экономику, не дало ожидаемых результатов. Более того, эти результаты были прямо противоположными тем, которые ожидали. Причина была в том, что в условиях неу­стойчивого развития системы схема: «управляющее воздей­ствие — желаемый результат» не работает. Управление ста­новится эффективным в том случае, когда главное не сила, а правильная организация воздействия на систему. Слабые, но правильно организованные, соответствующие структуре и тенденциям ее развития воздействия, оказывают более за­метное влияние на систему, чем сильные, но прямые управ­ляющие воздействия. Такие воздействия получили название «слабых резонансных воздействий». Характерно, что наблю­датель, находящейся «внутри» системы, слабые резонанс­ные воздействия практически не замечает, даже если они имеют искусственный характер.

Рассмотрим простейшую модель кругооборота капитала в какой-нибудь банковской системе.

Пусть в эту систему входит три банка: А, В, С, которые продают и покупают акции. Чтобы избежать больших чи­сел, будем считать, что стоимость всех акций ограничена единицей.

Предположим следующее:

  • банк А продает некоторые акции по цене X.
  • банк В, купив эти акции, в силу сложившихся обстоя­тельств вынужден продавать их по цене 1-Х.
  • банк С, покупая акции у банков А и В, продает их по цене Х(1-Х).
  • банк А, реагируя на такое изменение цены акций сам на­чинает продавать их по цене Х(1-Х), умноженной на не­который коэффициент к, то есть по цене кХ(1-Х).

Рис. 3.5.5. Схема кругооборота капитала в условной банковской системе

При фиксированном коэффициенте к мы имеем систему, поведение которой зависит от значения к. Таким образом, к можно рассматривать как управляющее воздействие на дан­ную систему.

Данная модель может быть реализована на компьютере. Тогда зависимость поведения системы от значения к можно детально исследовать с помощью компьютерного экспери­мента (подробно об этом см. параграф главы 4, посвящен­ный компьютерному эксперименту).

В итоге получается следующая картина.

При к < 3 переменная X стремиться к некоторому фикси­рованному значению Х0. В этом случае, аттрактор данной системы состоит из одной точки. Это — стабильное состоя­ние системы.

При малом увеличении к (немного больше 3) значение X начинает колебаться между двумя значениями. Аттрактор системы теперь уже состоит из двух точек Х0 и X,. Эта со­стояние системы уже не стабильно, хотя его еще можно счи­тать устойчивым. При этом, некоторое значение к0 опреде­ляет точку бифуркации: систему в точке к0 можно привести к стабильному состоянию со значением Х0 и X, с помощью малого дополнительного воздействия.

При увеличении к свыше к0 количество точек аттрактора возрастает и система, соответственно, становится менее и менее устойчивой.

Наконец, при к больших некоторого значения Ц перемен­ная X начинает принимать бесконечное число значений. Си­стема полностью теряет устойчивость. Образуется хаос.

Анализ приведенного примера подсказывает две основ­ные стратегии управления.

  1. Управляя только параметром к, добиться стабильного состояния системы. В этом случае можно ориентироваться на традиционную схему управления, приведенную в §1 дан­ной главы. Субъектом управления, в этом случае выступает банк А, а целью управления — создание стабильной банков­ской системы.
  2. Попытаться повысить свои доходы, используя нестаби­льность системы. Для этого необходимо зафиксировать зна­чение к0 параметра к. Система перейдет в самоуправляемое состояние с двумя возможными значениями параметра X: Х0 и Хг Путем малого постороннего воздействия необходи­мо «подтолкнуть» систему к «выбору» нужного значения X. После этого можно объявить X результатом «правильно ор­ганизованного» самоуправления. Далее можно попытаться улучшить результат и перейти к точке бифуркации kr По­следствия этого шага определяется известной пословицей: «либо пан, либо пропал», поскольку в случае ошибки управ­ления система превращается в хаос.

Данный пример показывает, какую роль в управлении играют точки бифуркации. Эти точки можно выявлять, что­бы избежать их и сохранить систему в стабильном состоя­нии, но можно создавать специально, исходя из опеделен-ных целей управления. Более того, в любой реальной системе речь идет не об отдельной ситуации неустойчивости, а о целом каскаде бифуркаций.

Управление через нестабильное состояние системы с не­обходимостью подразумевает наличие, как минимум, двух взаимосвязанных управляющих воздействий:

  • воздействие, создающее каскад бифуркаций;
  • слабое целенаправленное (резонансное) воздействие в точ­ках бифуркаций.

В общем виде, схема управления системой через ее неста­бильность выглядит так, как показано на рис. 3.5.6.

Воздействие, создающее каскад бифуркаций направлено, как правило, на разрыв системных связей между управляв-

Рис. 3.5.6. Схема создания ситуаций нестабильности в самоуправляющейся системе

мым объектом и другими объектами системы. Потеряв или существенно ослабив системные связи, объект становится «подвижным» и очень чувствительным даже к слабым управляющим воздействиям.

Как известно, системные связи могут иметь материаль­ный или информационный характер. В последнем случае речь идет об общности информационных моделей, которыми руководствуются объекты системы в своей деятельности. Дестабилизирующее воздействие направлено, как правило, на разрушение именно этих, информационных связей, то есть на деформацию всей информационной системы.

В неустойчивом состоянии слабое воздействие на систему может быть абсолютно незаметно для объекта управления. В этом случае он оказывается похожим на падающий камень, который по выражению философа Б. Спинозы (1632-77) ду­мает, что он падает по своей воле. Это значит, что управляю­щее воздействие, равно как и его цель оказываются для объ­екта управления, во многом, анонимными.

Глава 4

Методы исследований в информатике

Большинство знаний об окружающем нас мире мы полу­чаем в результате научных исследований.

Всякая научная дисциплина характеризуется своими объектом, предметом и методами исследования.

Объект исследования в информатике — информационные смысловые свойства материи, способы ее организации на основе информационного взаимодействия объектов.

Предметом исследования в информатике являются ин­формационные процессы, протекающие в системах различ­ной природы и возможность их автоматизации.

Методы исследования — способы деятельности, обеспечи­вающие достижение цели. Научный метод предназначен для достижения трех целей: описания, понимания и предсказа­ния.

Более конкретно можно сказать, что в информатике изу­чаются закономерности получения, представления, преоб­разования и применения информации с использованием средств автоматизации. Именно поэтому в курсе информати­ки изучаются:

• информационные системы и информационные модели
(получение информации и ее представление);

• информационные процессы и информационные техноло­
гии (преобразование информации);

• информационные основы управления (применение инфор­
мации).

В любом исследовании важно не только то, что исследу­ется, но и то, как это исследуется, важно иметь представле­нии о методах исследования, а также о специфике примене­ния общенаучных методов в данной области знания.

Общими для всех наук методами исследования являются наблюдение, теоретический анализ, эксперимент, в том чис­ле вычислительный, моделирование и др.

В информатике основными методами исследования явля­ются:

• системно-информационный анализ как частный случай
системного анализа;

  • информационное моделирование как частный случай мо­делирования;
  • компьютерный эксперимент как частный случай вычис­лительного эксперимента.

§ 4.1. Системный анализ

и информационное моделирование

как методы научного познания

Знания, как правило, не являются человеку в готовом виде. Их приобретение есть долгий и трудоемкий процесс. Общий метод познания, выработанный наукой, основан на наблюдении, выдвижении гипотез и их экспериментальной проверке. Он может быть назван гипотетико-теоретиче-ским методом. С основными его положениями вы знакомы из курсов физики, химии, обществознания. Напомним, в чем заключается его суть.

На основе наблюдений, теоретических рассуждений и эк­спериментов формируется гипотеза, то есть предположе­ние о природе или о закономерностях какого-либо явления.

Эта гипотеза проходит всестороннюю проверку: теорети­ческую — на соответствие модели явления ему самому, и эк­спериментальную — на отсутствие противоречий с извест­ными экспериментальными фактами.

Таким образом, эксперимент используется, как источник возникновения гипотез (рис. 4.1.1) и как средство проверки гипотез (рис 4.1.2).

Рис. 4.1.1

Эксперимент как источник возникновения гипотез

Рис. 4.1.2

Эксперимент как средство проверки гипотез

Пример. Знаменитым экспериментом, положившим начало совре­менным физическим представлениям о мире, был экспе­римент Майкельсона-Морли по определению относите­льной скорости света. Этот эксперимент подтвердил гипотезу, что скорость света — постоянная величина, которая не зависит от скорости движения источника све­та.

Пример. Выдающийся швейцарский психолог Ж. Пиаже, в тече­ние долгого времени проводивший эксперименты по установлению законов формирования человеческого ин­теллекта, высказал предположение, что маленький ребе­нок воспринимает скорость движения иначе, чем взрос­лые: не как расстояние, пройденное за данное время. Подтверждением этой гипотезы служит следующий экс­перимент.

Ребенку показывают две трубки разной длины (рис. 4.1.3). В разговоре он правильно отмечает, что одна из них длин­нее другой. Теперь через трубки пропускают куколок на палочках. Вводят их туда одновременно, и их движение рассчитано таким образом, что и выходят они из трубок в одно время. Ребенок считает, что куколки двигались с одинаковой скоростью, поскольку вышли из трубок одно­временно.

Рис. 4.1.3

Иллюстрация к эксперименту Ж. Пиаже

Примечание. Подумайте, отличались бы ответы детей, если бы ситуация с трубками и игрушками моделирова­лась на экране дисплея или обычного телевизора.

Пример. Пусть вы умеете работать в графическом и текстовом ре­дакторах и начинаете изучать электронные таблицы. Если вам известно, что пользовательский интерфейс этих программ похож, то вы можете заранее предполо-

жить (выдвинуть гипотезу), что назначение многих тер­минов, пиктограмм, горячих клавиш будет таким же, как и у уже изученных вами программ. В процессе прак­тической работы это предположение подтвердится или опровергнется.

Пример. Интересные эксперименты можно провести с геометри­ческими объектами.

Используя пластилин, можно показать, что из «бубли­ка» (в математике он называется тором) можно сделать чашку с ручкой (рис. 4.1.4 а). В то же время попытка сделать такую же чашку из «кренделя» (рис. 4.1.4 б) не удается. Можно сформулировать гипотезу, что это сде­лать невозможно. Доказать ее довольно сложно - для этого нужно использовать методы специальной матема­тической дисциплины, которая называется топологией.

Рис. 4.1.4

Изготовление чашки из пластилина

Примечание. Подумайте, как можно было бы организо­вать этот эксперимент на компьютере. Как вы думаете, доверие к результатам экспериментов (манипуляций) на компьютере такое же, как при реальном использовании пластилина?

Многие эксперименты в наше время проводятся при ак­тивном использовании компьютера. С его помощью выявля­ются закономерности, подтверждаются или опровергаются гипотезы, доказываются теоремы.

Современное научное познание направлено в основном на изучение больших и сложных систем. Причем работа ведет­ся по двум направлениям. Первое — это синтез сложных си­стем, второе — их анализ.

Создание нового заповедника, разработка автоматизиро­ванной производственной линии, получение новых материа­лов, создание информационно-вычислительной системы — с научной точки зрения все это примеры синтеза (конструи­рования) сложных систем. Основная задача научных иссле­дований в этом случае — поиск оптимального решения проб­лемы, то есть выбор способа построения системы, наилучшим образом приспособленной для выполнения за­данных функций.

Пример. Задача синтеза информационно-вычислительной систе­мы (ИВС) — компьютера, локальной сети, автоматиче­ской линии и пр. — связана с определением оптималь­ной структуры системы (тип, количество устройств, способы связи между ними) и выбором оптимальной стратегии управления вычислительными процессами. Исходными данными в этой задаче синтеза являются:

  • назначение и функции ИВС, определяемые перечнем прикладных задач, для решения которых создается система;
  • перечень ограничений на характеристики системы, например, на время решения задач, производитель­ность системы, стоимость оборудования, сложность обслуживания;
  • критерии эффективности, которые задают способы оценки качества работы системы;
  • информация о существующих типовых ИВС, их до­стоинствах и недостатках и др.

Анализ — это процесс определения (исследования) свойств, присущих системе.

Типичная задача анализа состоит в следующем. Пусть известны функции и характеристики элементов, входящих в состав системы, и определена ее структура. Необходимо определить функции или характеристики всей системы в целом.

Задача анализа включает три этапа.

На первом этапе нужно выявить причинно-следственные связи, присущие анализируемому объекту, и построить мо­дель, в которой будет отражена сущность происходящих в нем процессов (такая модель называется концептуальной).

На втором этапе на основе полученной информации стро­ится модель, в которой описываются количественные соот­ношения между характеристиками и параметрами объекта. Чаще всего это математическая модель, таблица или граф.

Поскольку построение модели производится формальны­ми методами, то необходимо проверить, достоверна ли мо­дель и можно ли доверять результатам, полученным при ее исследовании. Проверка осуществляется на третьем этапе анализа.

Пример. Мы привыкли к тому, что только в естественных науках и математике существуют твердо установленные законы. Однако это далеко не так. Проводя, например, многочис­ленные эксперименты с самыми обычными текстами из книг, газет, научных журналов, можно обнаружить уди­вительные закономерности.

В литературоведении широко используется лингвистиче­ский анализ литературных произведений. Основная идея (концептуальная модель) заключается в том, что у каждого автора свой неповторимый стиль, который мож­но проследить, в частности, по тому, какие части речи чаще использует автор, много ли он употребляет эпите­тов, какие предлоги предпочитает, какова структура бо­льшинства фраз и т. п. При исследовании конкретного литературного произведения все эти характеристики и соотношения между ними подсчитываются (в настоящее время с помощью специальных компьютерных про­грамм) и строится модель произведения (математиче­ская модель). Изучение этой модели позволяет ответить на вопросы, принадлежит ли данное произведение перу данного автора, в какой период творческой жизни оно было написано и пр.

Но результаты лингвистического анализа могут исполь­зоваться иначе. Например, такие модели лежат в основе синтеза систем искусственного интеллекта, способных создавать стихи, сказки, то есть в основе компьютерного «сочинительства». Построение и изучение таких систем, в свою очередь, дает новый интересный материал для лингвистов.

Результатом анализа является получение информаци­онной модели процессов, происходящих в системе, и их зако­номерностей.

Анализируют системы исходя из познавательных (узнать новое об изучаемом объекте) и практических целей. На практике результаты анализа применяют для постановки задачи синтеза — конструирования новых сложных систем.

Системный анализ широко используется и при подготов­ке решений в процессе управления, в том числе и в управле­нии сложными социальными системами.

Пример. Всесторонний и качественный анализ ситуации, сложив­шейся на рынке сырья, помогает предприятиям выбрать поставщиков. Маркетинговые исследования, связанные с анализом спроса и предложения на рынке товаров, по­зволят запланировать выпуск продукции, которая не бу­дет залеживаться на складах. Анализ рынка труда (по­требность предприятий в специалистах определенного профиля) позволяет вузам перестроить программу подго­товки так, чтобы их специалисты были востребованы.

Таким образом, исследование свойств систем начинается с анализа их свойств, способов организации системы в це­лом и основных подсистем, выявления различных стратегий управления процессами в системе, определения параметров

и характеристик системы. При этом строятся и исследуются различные модели системы и протекающих в ней процессов. Результаты анализа способствуют пониманию сущности этих процессов, их закономерностей.

При синтезе систем решается задача выбора параметров системы, при которых удовлетворяются заданные требова­ния к характеристикам процессов. Решение задачи синтеза сводится к оптимизации системы по заданному критерию эффективности с учетом ограничений, которые могут быть наложены на некоторые ее характеристики и параметры.

Метод — способ деятельности, направленный на достиже­ние определенной цели.

Цели научного исследования — описать, понять, пред­сказать.

Научное познание основано на наблюдении, выдвижении гипотез и их экспериментальной проверке.

На основе наблюдений, теоретических рассуждений и экс­периментов формируется гипотеза, то есть предположение о природе или о закономерностях какого-либо явления. Затем эта гипотеза проходит всестороннюю проверку: теоретиче­скую — на соответствие модели явления ему самому, и экспе­риментальную — на отсутствие противоречий ее следствий с известными экспериментальными фактами.

Эксперимент используется как источник возникновения гипотез и как средство проверки гипотез.

Важными методами научного познания являются анализ и синтез.

Системный анализ — совокупность методов, используе­мых для подготовки и обоснования решений по сложным проблемам различного характера.

Современный системный анализ объединяет в себе мето­ды системного, информационного, модельного подходов, а также многие математические методы и современные мето­ды управления.

Этапы системного анализа:

1. Важнейший этап системного анализа — построение обоб­щенной (концептуальной) модели, отражающей причин-

но-следственные взаимовязи в реальной ситуации, сущ­ность происходящих процессов.

  1. На втором этапе выявляются количественные соотноше­ния между параметрами и характеристиками объекта, строится, а затем исследуется информационная модель, отражающая выявленные соотношения.
  2. Третий этап — проверка достоверности результатов, по­лученных в процессе исследования.

В кибернетике системный анализ широко используется для анализа функционирования систем управления, а также на всех основных этапах проектирования сложных систем.

Задачи синтеза связаны с созданием (конструированием) новых систем.

При создании сложных систем необходимо:

  • выполнить требования, обусловленные назначением сис­темы;
  • учесть ограничения, которые накладываются на парамет­ры системы (надежность, устойчивость, производитель­ность, стоимость и пр.);
  • выбрать оптимальные параметры деятельности системы, при которых соблюдаются все требования и ограничения.

Задание 1

Вспомните все разделы (темы), которые вы изучали в курсе ин­форматики и определите к какому виду деятельности (получе­ние, представление, преобразование или применение информа­ции) относятся вопросы, рассматривавшиеся в этих разделах. 1, Например, при изучении раздела «Электронные таблицы» ваша деятельность была связана с представлением и применением ин­формации, а преобразование информации выполнялось компью­тером. Работа с геоинформационными системами связана, в основном, с получением информации. Алгоритмизация — это преобразование информации и так далее.

Задание 2

Приведите примеры известных вам экспериментов в области ин­форматики, биологии, истории и физики. Какие гипотезы прове­рялись в ходе этих экспериментов?

Задание 3

В школе аналогом научных исследований является работа над учебными проектами, например, изучение экологической ситуа­ции в районе.

Проведите системный анализ этой ситуации по следующей схе­ме:

выявление противоречий -> формулировка проблемы -» опреде­ление цели исследования —> формирование критериев «идеаль­ной» (желаемой) ситуации -> выявление воздействий внешней среды —> формирование гипотез о возможных путях разрешения проблемы (генерирование альтернатив) —> построение моделей —> исследование моделей -» исследование ресурсных возможностей и ограничений —> оптимизация решения -> рекомендации по ре­зультатам анализа.

Примечание. Под внешней средой в данном случае можно пони­мать традиции природопользования, законодательные акты, от­ношение населения к проблеме и пр.

Какие этапы этого исследования целесообразно проводить с при­менением компьютера и какие программные средства Вам для этого могут понадобиться?

Задание 4

На основании серии проведенных экспериментов были сформу­лированы две приведенные ниже гипотезы. Оцените их правдо­подобие и постарайтесь на основе тех же данных сформулиро­вать более правдоподобную гипотезу.

а) Как показывает статистика (применение методов которой в
данном случае можно рассматривать как поисковый экспери­
мент) большинство дорожных происшествий приходится на ма­
шины, которые едут со средней скоростью. Можно предполо­
жить, что движение с большой скоростью является более
безопасным;

б) та же статистика показывает, что большинство происшествий
происходит с автомобилистами недалеко от их дома. Можно
предположить, что поездки на дальние расстояния являются бо­
лее безопасными.

Задание 5

Компьютер и его программное обеспечение сами по себе пред­ставляют столь сложный объект, что многие его возможности могут стать предметом осмысления в процессе экспериментов с компьютером (таких экспериментов, объектом которых являет­ся сам компьютер).

На основе анализа архитектуры компьютера постройте модель движения и преобразования информации (сигналов) от момента нажатия на клавиатуре на какой-либо клавиши, например, «Z» до появления ее изображения на экране дисплея.

Задание 6

На основе анализа функций операционной системы сформули­руйте общие принципы (постройте концептуальную модель), за­ложенные в основу таких технологий, как Plug and Play («под­ключи и используй» — обеспечивает работу периферийных устройств — принтера, сканера и пр.), Drag and Drop («перетащи и положи» — обеспечивает копирование и перемещение выде­ленных фрагментов текста).

В основе научных исследований лежит эксперимент. Но насколько сами экспериментальные методы научно обосно­ваны? И. Пригожий и И. Стенгерс в книге «Порядок из хао­са» отмечают, что экспериментальный метод является поис­тине искусством. Будучи искусством, он никогда не гарантирует успех и не может исключить риск зайти в ту­пик или вывести неверное суждение в ходе научного иссле­дования. Экспериментальный метод есть искусство поста­новки интересного вопроса и перебора всех ответов, которые может дать природа на выбранном экспериментатором тео­ретическом языке.

Ученый, иследователь — это человек, у которого сложи­лись свои представления об окружающем его мире — своя мировоззренческая модель. Исходя из этой модели, он и на­чинает изучать интересующие его проблемы. Общие пред­ставления, которыми он руководствуется, называются мето­дологией исследования или основными подходами к организации исследования.

В современной науке самыми распространенными явля­ются три подхода — информационный, системный, синерге-тический.

Суть информационного подхода к научным исследовани­ям заключается в том, что при изучении любого объекта, процесса или явления (природного или социального) в пер-

вую очередь выявляются и анализируются его информаци­онные характеристики. При этом часто удается выяснить такие ранее незамеченные свойсва, которые оказываются принципиально важными для понимания глубинной сущно­сти явлений и закономерностей их дальнейшего развития. Анализ информационной среды, в которой находится изуча­емый объект, также помогает исследователю выявить при­чины многих явлений, в глубине которых, как правило, оказываются скрытыми информационные процессы.

О системном подходе речь шла в первой главе, а вот о си-нергетическом подходе, который становится ведущим в со­временных фундаментальных научных исследованиях, сто­ит поговорить подробнее.

Во второй половине XX века большинство фундаменталь­ных научных дисциплин приступили к изучению самоорга­низующихся и саморазвивающихся систем.

Раньше при изучении свойств объекта он рассматривался как закрытая, замкнутая система. Изучались те процессы, которые происходили внутри этой системы. Затем стали изучать, как происходит взаимодействие объекта с внешней средой, как он реагирует на внешние воздействия, но сам объект рассматривался все же как изолированный от среды.

Согласно синергетическому видению мира большинство существующих в природе систем — системы открытого типа. Между ними и окружающей средой постоянно проис­ходит обмен энергией, веществом, информацией. Поэтому для сложноорганизованных систем открытого типа харак­терна постоянная изменчивость, стохастичность. Дальней­шее поведение таких систем можно определить лишь с опре­деленной долей вероятности, даже если эти системы хорошо изучены.

В неравновесных условиях (в ситуациях неустойчивости) процессы самоорганизации в системе определяются взаимо­действием между случайностью и необходимостью, вероят­ностными (стохастическими) и вполне определенными (де­терминированными) законами.

В условиях неустойчивости системы основную роль игра­ют случайные взаимодействия (флуктуации), тогда как в си­туациях равновесия преобладают детерминированные связи. Следовательно, пути развития самоорганизующихся систем не предопределены. Вероятность выступает не как порожде­ние нашего незнания, а как неизбежное выражение хаоса. Будущее при таком подходе перестает быть данным; оно не заложено более в настоящем.

Наиболее известные работы в этой области связаны с име­нами Г. Хакена, И. Пригожина, И. Стенгерс.

Если воспользоваться терминологией И. Пригожина, мож­но сказать, что все системы содержат подсистемы, которые постоянно флуктуируют. Иногда отдельная флуктуация или комбинация флуктуации может стать (в результате положи­тельной обратной связи) настолько сильной, что существовав­шая прежде организация не выдерживает и разрушается. В этот переломный момент принципиально невозможно пред­сказать, в каком направлении будет происходить дальнейшее развитие: станет ли состояние системы еще более хаотиче­ским, или она перейдет на новый, более высокий уровень упорядоченности, или организации, который Пригожий на­зывает диссипативной структурой.

Отличительные особенности диссипативных структур:

  1. Диссипативные структуры когерентны: они ведут себя как единое целое и структурируются так, как если бы, например, каждая молекула, входящая в макросистему, была «информирована» о состоянии системы в целом.
  2. Происходящие в системе флуктуации вместо того чтобы затухать, могут усиливаться, и система эволюционирует в направлении «спонтанной» самоорганизации. Модели «порядка через флуктуации» открывают перед нами неу­стойчивый мир, в котором малые причины порождают большие следствия.
  3. Диссипативные структуры способны «запоминать» нача­льные условия своего формирования и, проходя через точки неустойчивости, «выбирать» одно из нескольких возможных направлений дальнейшей эволюции.
  4. Эволюция таких систем содержит как детерминирован­ные, так и стохастические элементы, представляя собой смесь необходимости и случайности.
  5. Неравновесность как исходное состояние представляет собой источник самодвижения системы.
  6. Время оказывается не безразличным для системы внеш­ним параметром, как это было в классической или кван­товой механике, а внутренней характеристикой физиче­ских систем, выражающих необратимость процессов в этих системах.

В настоящее время развитие теории самоорганизации связано с философским осмыслением результатов естествен­нонаучных исследований необратимых процессов и происхо­дящим на основе этого изменением мировоззренческих и ме­тодологических принципов освоения и постижения мира.

В свою очередь, это означает конец классического идеала всеведения и делает необходимым пересмотр рационализма как господствующего принципа научного объяснения дейст­вительности.

Если исходить из современной научной картины мира, в которой Вселенная — это открытая сверхсложная система, со всеми ее свойствами (неравновесностью, необратимостью, стохастичностыо, самоорганизацией, взаимосвязанностью, когерентностью элементов), то действительность больше не является некой неизменной данностью.

В открытом, необратимом мире, где будущее не может быть с точностью предопределено, а настоящее имеет не­сколько потенциальных линий развития, человек находит­ся в ситуации постоянного выбора, поиска наиболее опти­мального решения в соответствии с изменяющимися условиями..

Мышление не может полностью «догнать» действитель­ность: последняя всегда богаче, чем наше понимание ее. Действительность обладает способностью удивлять, а мыш­ление обладает способностью создавать, реально влиять на ход событий, изменяя их.

§ 4.2. Компьютерное моделирование. Компьютерный эксперимент

У современного компьютера много направлений исполь­зования. Среди них, как вы знаете, особое значение имеют возможности компьютера как средства автоматизации ин­формационных процессов. Но не менее значимы и его воз­можности как инструмента проведения эксперименталь­ной работы и анализа ее результатов.

Вычислительный эксперимент давно известен в науке. Вспомните открытие планеты Нептун «на кончике пера». Нередко результаты научных исследований считаются до­стоверными, только если они могут быть представлены в виде математических моделей и подтверждены математиче­скими расчетами. Причем, относится это не только к физике

или техническому конструированию, но и к социологии, лингвистике, маркетингу — традиционно гуманитарным дисциплинам, далеким от математики.

Вычислительный эксперимент является теоретическим методом познания. Развитием этого метода является чис­ленное моделирование — сравнительно новый научный ме­тод, получивший широкое распространение благодаря появ­лению ЭВМ.

Численное моделирование широко используется и на практике, и при проведении научных исследований.

Пример. Без построения математических моделей и проведения самых разных расчетов над постоянно изменяющимися данными, поступающими с измерительных приборов, невозможна работа автоматических производственных линий, автопилотов, станций слежения, систем автома­тической диагностики. Причем для обеспечения надеж­ности систем расчеты должны проводиться в режиме ре­ального времени, а их погрешности могут составлять миллионные доли процента.

Пример. Современного астронома чаще можно увидеть не у оку­ляра телескопа, а перед дисплеем компьютера. Причем не только теоретика, но и наблюдателя. Астрономия — необычная наука. Она, как правило, не может непосред­ственно экспериментировать с объектами исследований. Различные виды излучения (электромагнитное, гравита­ционное, потоки нейтрино или космических лучей) аст­рономы только «подсматривают» и «подслушивают». Значит, нужно научиться извлекать максимум информа­ции из наблюдений и воспроизводить их в расчетах для проверки гипотез, описывающих эти наблюдения. При­менения компьютеров в астрономии, как и в других нау­ках чрезвычайно разнообразны. Это и автоматизация на­блюдений, и обработка их результатов (астрономы видят изображения не в окуляре, а на мониторе, соединенным со специальными приборами). Компьютеры также необ­ходимы для работы с большими каталогами (звезд, спек-тальных анализов, химических соединений и пр.).

Пример. Всем известно выражение «буря в стакане воды». Чтобы детально исследовать такой сложный гидродинамиче­ский процесс, как буря, необходимо привлекать слож­ные методы численного моделирования. Поэтому в круп­ных гидрометеоцентрах находятся мощные компьюте­ры: «буря разыгрывается» в кристалле процессора компьютера.

Даже если вы проводите не очень сложные вычисления, но вам нужно повторить их миллион раз, то лучше один раз написать программу, а компьютер повторит ее столько раз, сколько это нужно (ограничением, естественно, будет быст­родействие компьютера).

Численное моделирование может быть самостоятельным методом исследования, когда интерес представляют только значения каких-то показателей (например, себестоимости продукции или интегрального спектра галактики), но чаще оно выступает одним из средств построения компьютерных моделей в более широком смысле этого термина.

Исторически сложилось так, что первые работы по компьютерному моделированию были связаны с физикой, где с помощью численного моделирования решался целый класс задач гидравлики, фильтрации, теплопереноса и теп­лообмена, механики твердого тела и т. п. Моделирование, в основном, представляло собой решение сложных нелиней­ных задач математической физики и по существу было, ко­нечно, моделированием математическим. Успехи математи­ческого моделирования в физике способствовали распро­странению его на задачи химии, электроэнергетики, биоло­гии, причем схемы моделирования не слишком отличались друг от друга. Сложность решаемых на основе моделирова­ния задач ограничивалась лишь мощностью имеющихся ЭВМ. Данный вид моделирования широко распространен и в настоящеее время. Более того, за время развития численно­го моделирования накоплены целые библиотеки подпрог­рамм и функций, облегчающих применение и расширяю­щих возможности моделирования. И все же в настоящее время понятие «компьютерное моделирование» обычно свя­зывают не с фундаментальными естественно-научными дис­циплинами, а в первую очередь с системным анализом сложных систем с позиций кибернетики (то есть с позиций управления, самоуправления, самоорганизации). И сейчас компьютерное моделирование широко используется в биоло­гии, макроэкономике, при создании автоматизированных систем управления и пр.

Пример. Вспомните эксперимент Пиаже, описанный в предыду­щем параграфе. Его, конечно же можно было бы провес­ти не с реальными предметами, а с анимационным изоб­ражением на экране дисплея. Но ведь движение игрушек можно было бы заснять на обычную киноплен­ку и демонстрировать ее по телевизору. Целесообразно ли называть использование компьютера в этом случае компьютерным моделированием?

Пример. Моделью полета тела, брошенного вертикально вверх или под углом к горизонту, является, например, график высоты тела в зависимости от времени. Построить его можно

а) на листе бумаги по точкам;

б) в графическом редакторе по тем же точкам;

в) с помощью программы деловой графики, например, в
электронных таблицах;

г) написав программу, которая не только выводит на эк­
ран траекторию полета, но и позволяет задавать различ­
ные исходные данные (угол наклона, начальную ско­
рость).

Почему вариант б) не хочется называть компьютерной моделью, а варианты в) и г) вполне соответствуют этому названию?

Под компьютерной моделью часто понимают программу (или программу плюс специальное устройство), которая обеспечивает имитацию характеристик и поведения опреде­ленного объекта. Результат выполнения этой программы также называют компьютерной моделью.

В специальной литературе термин «компьютерная мо­дель» более строго определяется так:

  • условный образ объекта или некоторой системы объектов (процессов, явлений), описанный с помощью взаимосвя­занных компьютерных таблиц, блок-схем, диаграмм, гра­фиков, рисунков, анимационных фрагментов, гипертек­стов и так далее и отображающий структуру (элементы и взаимосвязи между ними) объекта. Компьютерные моде­ли такого вида называют структурно-функциональны­ми;
  • отдельную программу или совокупность программ, позво­ляющих с помощью последовательности вычислений и графического отображения их результатов воспроизво­дить (имитировать) процессы функционирования объекта при условии воздействия на него различных, как правило случайных, факторов. Такие модели называют имитаци­онными.

Компьютерные модели могут быть простыми и сложны­ми. Простые модели вы неоднократно создавали, когда изу­чали программирование или строили свою базу данных. В системах трехмерной графики, экспертных системах, авто­матизированных системах управления строятся и использу­ются очень сложные компьютерные модели.

Пример. Идея построить модель деятельности человека с помо­щью компьютера не нова, и трудно найти такую область деятельности, в которой ее не пытались бы реализовать. Экспертные системы — компьютерные программы, мо­делирующие действия эксперта-человека при решении задач в какой-либо предметной области на основе накоп­ленных знаний, составляющих базу знаний. ЭС решают задачу моделирования умственной деятельности. Из-за сложности моделей разработка ЭС занимает, как прави­ло, несколько лет.

Современные экспертные системы кроме базы знаний имеют еще и базу прецедентов — например, результаты обследования реальных людей и информацию о последу­ющей успешности/неуспешности их деятельности. Для примера, база прецедентов экспертной системы Нью-Йоркской полиции — 786 000 чел., Центра «Хоб­би» (кадровая политика на предприятии) — 512 000 чел., причем по словам специалистов этого центра, раз­рабатываемая ими ЭС заработала с ожидаемой точно­стью, только когда база перевалила за 200 000 человек, на ее создание ушло 6 лет.

Пример. Прогресс в создании компьютерных графических изоб­ражений продвинулся от каркасных образов трехмерных моделей с простым полутоновым изображением до совре­менных реалистических картинок, являющихся образ­цами искусства. Это явилось результатом успеха в более точном определении среды моделирования. Прозрач­ность, отражение, тени, модели освещения и свойства поверхности — вот несколько областей, где напряженно работают группы исследователей, постоянно предлагаю­щие новые алгоритмы создания все более реалистичных искусственных образов. Сегодня эти методы применяют­ся и для создания качественной анимации.

Практические потребности в компьютерном моделирова­нии ставят задачи перед разработчиками аппаратных средств компьютера. То есть метод активно влияет не только на появление все новых и новых программ, но и на разви­тие технических средств.

Пример. Впервые о компьютерной голографии заговорили в 80-х годах. Так, в системах автоматизированного проектиро­вания, в геоинформационных системах было бы неплохо иметь возможность не просто посмотреть интересующий объект в трехмерном виде, но представить его в виде го-лограмы, которую можно повернуть, наклонить, загля­нуть внутрь нее. Чтобы создать голографическую кар­тинку, полезную в реальных приложениях, необходимы

Рис. 4.2.1

Пример

голографической

картинки

дисплеи с гигантским количеством пикселей — до мил­лиарда. Сейчас такая работа активно ведется. Одновре­менно с разработкой голографического дисплея полным ходом идет работа по созданию трехмерной рабочей стан­ции на основе принципа, получившего название «подме­на реальности». За этим термином стоит идея широкого применения всех тех естественных и интуитивных мето­дов, которые человек использует при взаимодействии с натурными (вещественно-энергетическими) моделями, но при этом делается упор на их всестороннее улучше­ние и развитие с помощью уникальных возможностей цифровых систем. Предполагается, например, что будет возможность манипулирования и взаимодействия с компьютерными голограммами в реальном времени с по­мощью жестов и прикосновений.

Компьютерное моделирование имеет следующие преиму­щества:

  • дает возможность рассчитать параметры эффектов, изуче­ние которых в реальных условиях невозможно, либо очень затруднительно по технологическим причинам;
  • позволяет моделировать и изучать явления, предсказыва­емые любыми теориями;
  • является экологически чистым и не представляет опасно­сти для природы и человека;
  • обеспечивает наглядность;
  • доступно в использовании.

Основное преимущество компьютерного моделирования заключается в том, что оно позволяет не только пронаблю­дать, но и предсказать результат эксперимента при каких-то особых условиях. Благодаря этой возможности этот метод нашел применение в биологии, химии, социологии, эколо­гии, физике, экономике и многих других сферах знания.

Компьютерное моделирование широко используется в обучении. С помощью специальных программ можно по­смотреть модели таких явлений, как явления микромира и мира с астрономическими размерами, явления ядерной и квантовой физики, развитие растений и превращения ве­ществ при химических реакциях.

Подготовка специалистов многих профессий, особенно та­ких, как авиадиспетчеры, пилоты, диспетчеры атомных и электростанций, осуществляется с помощью тренажеров, управляемых компьютером, моделирующим реальные ситу­ации, в том числе аварийные.

На компьютере можно провести лабораторные работы, если нет необходимых реальных устройств и приборов или если решение задачи требует применения сложных матема­тических методов и трудоемких расчетов.

Компьютерное моделирование дает возможность «ожи­вить» изучаемые физические, химические, биологические, социальные законы, поставить с моделью ряд эксперимен­тов. Но не стоит забывать, что все эти эксперименты носят весьма условный характер и познавательная ценность их тоже весьма условна.

Пример. До практического использования реакции ядерного рас­пада физики-ядерщики просто не знали о вреде радиа­ции, но первое массовое применение «достижений» (Хи­росима и Нагасаки) четко показало, насколько радиация

с опасна для человека. Начни физики с ядерных электро-

станций, человечество долго еще не узнало бы о вреде радиации. Достижение химиков начала прошлого века -мощнейший пестицид ДДТ — достаточно долго считался абсолютно безопасным для человека-

В условиях применения мощных современных техноло­гий, широкого тиражирования и бездумного использования ошибочных программных продуктов такие узкоспециаль­ные, казалось бы, вопросы, как адекватность компьютерной модели реальности, могут приобрести весомое общечелове­ческое значение.

Компьютерные эксперименты — это инструмент ис­следования моделей, а не природных или социальных яв­лений.

Поэтому одновременно с компьютерным экспериментом всегда должен идти натурный, чтобы исследователь, сравни­вая их результаты, мог оценить качество соответствующей модели, глубину наших представлений о сути явлений при-

роды. Не стоит забывать, что физика, биология, астроно­мия, информатика это науки о реальном мире, а не о вирту­альной реальности.

В научных исследованиях, как фундаментальных так и практически направленных (прикладных), компьютер не­редко выступает как необходимый инструмент эксперимен­тальной работы.

Компьютерный эксперимент чаще всего связан:

• с проведением сложных математических расчетов (чис­
ленное моделирование);

• с построением и исследованием наглядных и/или дина­
мических моделей (компьютерное моделирование).

Под компьютерной моделью понимается программа (или программа в совокупности со специальным устройст­вом), которая обеспечивает имитацию характеристик и по­ведения определенного объекта, а также результат выполне­ния этой программы в виде графических изображений (неподвижных или динамических), числовых значений, таб­лиц и пр.

Различают структурно-функциональные и имитационные компьютерные модели.

Структурно-функциональная компьютерная модель — это условный образ объекта или некоторой системы объек­тов (процессов, явлений), описанный с помощью взаимосвя­занных компьютерных таблиц, блок-схем, диаграмм, графи­ков, рисунков, анимационных фрагментов, гипертекстов и так далее и отображающий структуру объекта или его пове­дение.

Имитационная компьютерная модель — это отдельная программа или программный комплекс, позволяющий с по­мощью последовательности вычислений и графического ото­бражения их результатов воспроизводить (имитировать) процессы функционирования объекта при условии воздейст­вия на него различных случайных факторов.

Компьютерное моделирование — метод решения задачи анализа или синтеза системы (чаще всего сложной системы) на основе использования ее компьютерной модели.

Преимущества компьютерного моделирования заключа­ются в том, что оно:

  • дает возможность рассчитать параметры и смоделировать явления, процессы и эффекты, изучение которых в реаль­ных условиях невозможно либо очень затруднительно;
  • позволяет не только пронаблюдать, но и предсказать ре­зультат эксперимента при каких-то особых условиях;
  • позволяет моделировать и изучать явления, предсказыва­емые любыми теориями;
  • является экологически чистым и не представляет опасно­сти для природы и человека;
  • обеспечивает наглядность;
  • доступно в использовании.

Метод компьютерного моделирования нашел применение в биологии, химии, социологии, экологии, физике, эконо­мике, лингвистике, юриспруденции и многих других сферах знания.

Компьютерное моделирование широко используется в обучении, подготовке и переподготовке специалистов:

  • для наглядного представления моделей явлений микро­мира и мира с астрономическими размерами;
  • для имитации процессов, происходящих в мире живой и неживой природы
  • для моделирования реальных ситуаций управления сложными системами, в том числе аварийных ситуаций;
  • для проведения лабораторных работ, когда нет необходи­мых устройств и приборов;
  • для решения задач, если при этом требуется применение сложных математических методов и трудоемких расче­тов.

Важно помнить, что на компьютере моделируется не объ­ективная реальность, а наши теоретические представления о ней. Объектом компьютерного моделирования являются ма­тематические и другие научные модели, а не реальные объ­екты, процессы, явления.

Компьютерные эксперименты — это инструмент иссле­дования моделей, а не природных или социальных явлений.

Критерием верности любого из результатов компьютерно­го моделирования был и остается натурный (физический, химический, социальный) эксперимент. В научных и прак­тических исследованиях компьютерный эксперимент может лишь сопутствовать натурному, чтобы исследователь, срав-

нивая их результаты, мог оценить качество модели, глубину наших представлений о сути явлений природы.

Важно помнить, что физика, биология, астрономия, эко­номика, информатика — это науки о реальном мире, а не овиртуальной реальности.

Задание 1

Письмо, написанное в текстовом редакторе и отправленное по электронной почте, вряд ли кто-нибудь назовет компьютерной моделью.

Текстовые редакторы часто позволяют создавать не только обыч­ные документы (письма, стаьи, отчеты), но и шаблоны докумен­тов, в которых есть постоянная информация, которую пользова­тель не может изменить, есть поля данных, которые заполняются пользователем, а есть поля, в которых автоматиче­ски производятся расчеты на основании введенных данных. Можно ли такой шаблон рассматривать как компьютерную мо­дель? Если да, то что в этом случае является объектом моделиро­вания и какова цель создания подобной модели?

Задание 2

Вы знаете, что перед тем, как создавать базу данных, сначала нужно построить модель данных. Вам также известно, что алго­ритм — это модель деятельности.

И модели данных и алгоритмы чаще всего разрабатываются в расчете на компьютерную реализацию. Можно ли сказать, что в какой-то момент они становятся компьютерной моделью, и если да, то когда это происходит?

Примечание. Проверьте свой ответ на соответствие определению понятия «компьютерная модель».

Задание 3

Опишите этапы построения компьютерной модели на примере разработки программы, имитирующей какое-нибудь физическое явление.

Задание 4

Приведите примеры, когда компьютерное моделирование при­несло реальную пользу и когда оно привело к нежелательным по­следствиям. Подготовьте доклад на эту тему.

Методы исследований в информатике 191

Задание 5

Попробуйте оценить, какой вид компьютерного эксперимента — численные расчеты или имитационное моделирование — чаще используется в деятельности таких специалистов, как эконо­мист, конструктор, архитектор, технолог, менеджер.

Задание 6

Следующая программа демонстрирует появление структуры-ат­трактора в системе. Отладьте и протестируйте ее. В качестве параметра задайте величину х=0.3.

  1. PRINT "input x:"; : INPUT x0
  2. KEY OFF

22 n% = 0

25 SCREEN 1: CLS : COLOR 8, 1

  1. FOR j% = 1 TO 200
  2. r = 2.5 + j% *.0075: x = xO 30 FOR i% = 1 TO 200

40 x = x * r * (1-х)

50 NEXT i%

70 FOR i% = 1 TO 300

80 x = r * x * (1-х)

90 1% = x * 200

100 PSET (1%, j%), 1: n% = n% + 1

105 IF n% = 4 THEN n% = 0

110 NEXT i%

120 NEXT j%

130 a$ = INPUTS (1)

140 STOP

Как известно, важным свойством модели является ее адекватность моделируемому объекту.

Об адекватности какому объекту можно говорить по отношению к компьютерной модели?

Моделируем ли мы на компьютере объективную реаль­ность или наши теоретические представления о ней?

Безусловно, объектом компьютерного моделирования яв­ляются математические и другие научные модели, а не реа­льные объекты, процессы, явления. И говорить об адекват­ности компьютерной модели мы можем только по

отношению к той теоретической модели (научным представ­лениям), на основе которых построена эта модель.

Появлению большинства новых конструкций — автомо­билей, самолетов, мостов, ракет, мостов, зданий и т. д. мы обязаны компьютерным моделирующим программам. Одна­ко не стоит забывать, что критерием верности любого из ре­зультатов расчетов был и остается натурный (физический, химический, социальный) эксперимент. Результаты компьютерных расчетов представляют всего лишь итог мо­делирования реальной конструкции. От удачности модели и математического аппарата, реализующего модель, зависит соответствие результатов расчета и экспериментальной про­верки.

Исследование реальных объектов с помощью метода мо­делирования проходит три этапа:

  1. физическая модель;
  2. математическая модель (алгоритм);

3) численная реализация (компьютерная моделирующая
программа).

На каждом этапе возможны ошибки, кадый расчет имеет вполне определенную погрешность. Однако если создание ал­горитма или текста программы достаточно отлаженный меха­низм, то создание физической модели относится к области научных гипотез, которые нередко требуют подтверждения.

Отметим, что научные заблуждения свойственны любому человеку, это нормальное развитие процесса познания. Од­нако если ранее достижения ученых не оказывали грандиоз­ного влияния на человечество в целом, то сегодня это доста­точно опасно. Если, с точки зрения безопасности, представление о Земле (планета, центр вселенной, тарелка) не является катастрофичным, то другие заблуждения уче­ных могут дорого обойтись человечеству.

Существует уникальные объекты или явления, экспери­ментальное познание которых хотя и возможно, но чаще всего не раскрывает его природу. Тем не менее, именно эти объекты и явления дают, быть может, самое полное знание о нашем мире. Один из таких объектов несколько веков храниться в г. Турине (Италия) и называется — Туринская Плащаница.

Туринская Плащаница представляет собой кусок древне­го полотна чуть больше четырех метров в длину и метра в ширину. На этой ткани имеются два образа обнаженного мужского тела во весь рост, расположенные симметрично друг к другу голова к голове. На одной половине Плащани­цы — образ мужчины со сложенными впереди руками и ров­но лежащими ногами; на другой половине — то же тело со спины. Само изображение нечеткое, как бы размытое. Сек­рет этого был раскрыт неожиданно в 1898 году. Тогда Пла­щаницу впервые сфотографировали. И каково же было удивление фотографа, когда на стеклянном негативе проя­вилось четкое, совершенно поразительное изображение Хри­ста.

Во время научного исследования Плащаницы в 1973 году ученые применили к ее фотографиям специальные компью­терные программы. С их помощью удалось восстановить ре­алистичную объемную форму лица и всего тела человека, плоский образ которого на ней запечатлен.

На Плащанице имеются следы крови, текшей из много­численных ран: следы кровоподтеков на голове от шипов тернового венца, следы от гвоздей в запястьях и в ступнях ног, следы от ударов бичей на груди, спине и ногах, большое кровавое пятно от раны в левом боку. Вся совокупность фак­тов, полученных при исследовании Плащаницы научными методами, свидетельствуют в согласии с евангельским пове­ствованием, что образ на ней возник тогда, когда тело Иису­са Христа лежало в погребальной пещере на одной половине Плащаницы, а другая половина, обернутая через голову, по­крывала Его тело сверху (фрагмент плащаницы изображен на рис 4.2.2).

На Плащанице ученые не обнаружили красящих ве­ществ. Отсюда был сделан вывод, что изображение на ткани является изображением как на фотонегативе и что оно мог­ло появиться при воздействии очень сильного потока света, когда обычная ткань сама становится как бы негативом. Но никто, даже в условиях современных лабораторий, не смог воспроизвести ничего подобного изображению на Плащани­це. Расчёты показывают, что для получения такого изобра­жения необходим больший поток света внутри Плащаницы, чем при ядерном взрыве в Хиросиме, но при этом ткань дол-быть сохранена.

Рис. 4.2.2

Фрагментизображения Плащаницы

В последнее время при анализе проблем, связанных с ис­кусственным интеллектом, часто применяют математиче­ский аппарат нечетких множеств, идея и реализация кото­рого принадлежит американскому математику Л. А. Заде. Суть этого подхода состоит в своего рода некотором отказе от принципа детерминизма. Пожалуй, наиболее поразите­льным свойством человеческого интеллекта является спо­собность принимать правильные решения в обстановке не­полной и нечеткой информации. Построение моделей приближенных рассуждений человека и использование их в компьютерных системах будущих поколений представляет сегодня одну из важнейших проблем науки.

Смещение центра исследований нечетких систем в сторо­ну практических приложений привело к постановке целого ряда проблем таких, как необходимость создания новых ар­хитектур компьютеров для нечетких вычислений, элемент­ной базы нечетких компьютеров и контроллеров, инстру­ментальные средства разработки, инженерные методы расчета и разработки нечетких систем управления и многое другое. Математическая теория нечетких множеств позво-

ляет описывать нечеткие понятия и знания, оперировать этими знаниями и делать нечеткие выводы. Основанные на этой теории методы построения компьютерных нечетких си­стем существенно расширяют области применения компью­теров и компьютерного моделирования. В последнее время нечеткое управление является одной из самых активных и результативных областей исследований применения теории нечетких множеств. Нечеткое управление оказывается осо­бенно полезным, когда технологические процессы являются слишком сложными для анализа с помощью общепринятых количественных методов или когда от доступных источни­ков информации поступают неточные или неопределенные сведения.

Экспериментально показано, что нечеткое управление дает лучшие результаты, по сравнению с получаемыми при общепринятых алгоритмах управления. Нечеткие методы помогают управлять домной и прокатным станом, автомоби­лем и поездом, распознавать речь и изображения, проекти­ровать роботов, обладающих осязанием и зрением. Нечеткая логика, на которой основано нечеткое управление, ближе по духу к человеческому мышлению и естественным языкам, чем традиционные логические системы. Нечеткая логика, в основном, обеспечивает эффективные средства отображения неопределенностей и неточностей реального мира. Наличие математических средств отражения нечеткости исходной информации позволяет построить компьютерную модель, адекватную реальности.

Информатика в отличие от других общеобразовательных дисциплин имеет одну чрезвычайно важную особенность. С точки зрения информатики (в отличие от математики, физи­ки, химии, биологии, литературы) информация, информа­ционные процессы отражают не часть современной цивили­зации, а являются ее основой.

Информационная цивилизация — вполне закономерный этап развития западноевропейской цивилизации, который совершенно необязателен для других цивилизаций. Однако, поскольку именно этот тип цивилизации в той или иной сте­пени «примеряется» значительным числом стран современ­ного мира необходимо ясно осознавать ее позитивные и не­гативные моменты.

Следует сказать, что феномен «Информационного обще­ства», «Информационной цивилизации» находится в фокусе огромного числа исследований. В нашей стране фундамента­льные работы в этом направлении выполнены: Н. Н. Моисе­евым, А. Д. Урсулом, К. К. Колиным и др.

Отметим лишь некоторые моменты в развития этой ци­вилизации, следуя фундаментальной монографии К. К. Ко-лина «Информационная цивилизация» (Москва, 2002).

1. Информационная экономика.
Информационная сфера на сегодняшний день является

одной из самых эффективных сфер вложения капитала. Об­щий объем мирового рынка информационных технологий оценивается сегодня величиной порядка 4 млрд. долларов и этот объем постоянно растет.

2. Глобальная цифровизация.

Одной из основных тенденций развития современной тех­ники является широкое использование цифровой элемент­ной базы. Встроенные микропроцессоры сегодня являются неотъемлемым компонентом большинства технических устройств. Например, на основе нанотехнологии создаются сверхминиатюрные роботы, способные, осуществлять поле­ты внутри газопровода и нести при этом миниатюрную теле­визионную камеру.

3. Развитие интеллектуальных компьютерных систем.

Эгоцентрическая жизненная позиция человека создала для современной цивилизации реальную угрозу самоуничто­жения. Многочисленные проблемы, в частности, экологиче­ские требуют мобилизации всех имеющихся ресурсов, преж­де всего интеллектуальных. Значительную помощь здесь могут оказать интеллектуальные компьютерные системы, которые многократно увеличивают аналитические способно­сти человеческого мышления.

Вместе с тем, информационная цивилизация породила значительные и только ей свойственные проблемы.

4. Виртуализация экономики.

Оформление рынка ценных бумаг, привело к тому, что основные сделки стали совершаться не с реальными предме­тами, а с акциями, заменяющими эти предметы (т. е. по сути — с информационными моделями предметов). Дина­мичность этих сделок была такова, что на сегодняшний день около 90% (!) всех финансовых средств мировой экономики вращается в сфере ценных бумаг и лишь 10% поддерживает реальный сектор экономики. За пределами США циркули­руют около 400 трлн. долларов, которые обеспечены матери­альными ценностями не более чем на 30%. Таким образом, усилиями крупнейших финансистов в мире создана гигант­ская финансовая пирамида. Все это может привести к фи­нансово-экономической катастрофе мирового масштаба.

5. Виртуализация политики и культуры.

Замена реальных вещей их информационными моделями в информационной цивилизации становится всеобщим явле­нием. В виртуальной политике важны не деловые качества кандидата, а его «имидж» (опять-таки, информационная модель), созданный Public Relation Technology. В искусстве таланта художника, писателя или исполнителя, как прави­ло, оказывается недостаточно. Нужна значительная «рас-куртка», требующая применения все тех же технологий.

6. Манипуляция сознанием.

Ценности демократического общества основаны на принципе свободы. Однако, информационная цивилизации все больше и больше отходит от этого принципа, заменяя его внешне малозаметным, но чрезвычайно эффективным инструментом «информационного управления» сознанием (в частности, через «точки бифуркации»).

Все эти особенности информационной цивилизации таят в себе большие опасности, на которые не следует закрывать глаза.

В завершении можно сказать, что мы живем в удивитель­ном и во многом загадочном мире информации, но понимать этот мир и уметь сохранить в нем традиционные человече­ские ценности исключительно важно не только на сегодняш­ний день, но и в будущем.

Примечание.

Дополнительную информацию о систематическом курсе информатики можно получить на серверах:

  1. www.phis.org.ru
  2. www.ioso.ru


Pages:     | 1 |   ...   | 3 | 4 ||
 





<


 
2013 www.disus.ru - «Бесплатная научная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.