WWW.DISUS.RU

БЕСПЛАТНАЯ НАУЧНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 

Pages:     || 2 |
-- [ Страница 1 ] --

ПЛАН

Введение

1. Выбор исследовательского плана

2. Концептуализация и измерение: общий обзор

3. Уровни измерения

4. Общие правила конструирования опросников

5. «Сензитивные» вопросы

6. Выбор формата для ответов

7. Макет анкеты (опросника)

Литература

Введение

Метод опроса — самый распространенный из социологических методов, опре­деляющий «образ» социологии в глазах непосвященных и к тому же имеющий самую богатую и давнюю историю. Утверждение о том, что почти невозможно дать строгое и исчерпывающее определение того, что такое опрос, на первый взгляд кажется нелепостью. Однако в действительности представления о том, каким должен быть хороший социологический опрос, менялись так часто, что любая попытка свести определение опроса к конкретной технике сбора инфор­мации, плану исследования, типу анализа данных или характеру использова­ния полученных сведений наверняка столкнется с трудностями. Трудности эти так существенны, что один известнейший специалист в этой области в монографии, посвященной анализу истории и перспектив опросного метода, пред­ложил говорить о некотором «базовом типе» опроса, по отношению к которому можно было бы упорядочить все многообразие реальных опросных исследова­ний[1]. Идеальной моделью он предложил считать «модель Гэллапа», т. е. тот тип опроса общественного мнения, который сложился в 1930—1940-х гг. в ре­зультате сотрудничества (и конкуренции) между основанным Дж. Гэллапом в 1935 году Американским институтом общественного мнения и другими иссле­довательскими фирмами. Для типичного «гэллаповского» опроса характерны следующие признаки:

1) общенациональный характер;

2) отбор из генеральной совокупности всех лиц, достигших избирательного возраста;

3) максимальная приближенность времени проведения опроса ко времени выборов или референдумов;

4) среднее число респондентов в выборке — 2000 человек;

5) случайный или квотный характер выборки;

6) использование стандартных вопросников и личное интервьюирование каждого респондента по месту жительства;

7) «закрытый» характер вопросов;

8) сбор индивидуальных, неагрегированных данных (каждое наблюдение может быть соотнесено с конкретным индивидуумом в выборке)[2].

Широко распространенные отклонения от описанной «гэллаповской» нормы все же столь существенны, что нам следует рассмотреть и другие подходы к определению сути опросного метода. Во-первых, следует вспомнить о том, что для социологии как науки главной функцией опроса является все же не пред­сказание результатов завтрашних выборов, а проверка гипотез о характере свя­зей между различными переменными. (Переменная-признак задается как one-рационализация неких содержательных представлений о существенном для социологической теории качестве, свойстве: «социально-экономическом стату­се», «отчуждении», «расовой сегрегации» и т. п.) Во-вторых, использование выборочного обследования, как говорится в главах 7 и 8, как раз и имеет основ­ной целью либо оценку значения определенного параметра в совокупности, либо — в большинстве случаев — проверку статистической гипотезы о связи между переменными. Эксперимент — это идеальная модель исследовательско­го плана для анализа причинных связей. Выборочное обследование (опрос) — хорошее приближение к идеальной модели. Для идеального эксперимента, на­помним, характерны:

1) контроль условий, т. е. возможность варьирования независимых пере­менных и измерения зависимых;

2) использование экспериментальной и контрольной групп для проведе­ния повторных сравнений;

3) рандомизация, т. е. случайный отбор испытуемых в контрольную и эк­спериментальную группы.

В выборочном исследовании, строго говоря, отсутствует возможность контро­ля, так как исследователь лишен возможности манипулировать независимыми переменными, произвольно задавать их значение. Однако с помощью количе­ственных методов измерения и статистического анализа связи между пере­менными выборочный опрос может максимально приблизиться к той модели причинного вывода, которая лежит в основе экспериментального метода.

В целом анализ связи между переменными — и экспериментальный, и сугубо статистический, основанный на опросных данных, — подразумевает перекрес­тную группировку данных по двум переменным (независимой и зависимой), обнаружение связи между ними и введение третьей, контрольной переменной для оценки ее влияния на изучаемую связь. (Кстати, те возможности для конт­роля влияния «посторонних» факторов на исследуемую взаимосвязь, которые возникают при анализе связи в выборочных обследованиях, обычно даже пре­восходят возможности эксперимента.) В последнем случае набор контрольных переменных, «изолируемых» с помощью эксперимента, обычно ограничен. В вы­борочном обследовании список переменных чаще всего значительно обширнее и к тому же включает в себя такие переменные, которые в принципе не могут использоваться в эксперименте из практических или этических соображений: нельзя, например, произвольно назначить испытуемому экспериментальное условие «родился чернокожим» или «часто подвергался жестокому обращению» Однако заметим сразу, что последнее обстоятельство все чаще используется не столько для восхваления, сколько для критики — во многих отношениях спра­ведливой — применимости выборочных опросов для анализа причинных свя­зей (о чем еще будет сказано ниже).



Случайный отбор, используемый на том или ином этапе как основа построения выборки для массового опроса, может рассматриваться как подобие рандоми­зации в эксперименте. В идеальном случае, почти не встречающемся на прак­тике, любая единица генеральной совокупности имеет равные шансы попасть в выборку. Поэтому влияние внешних, «посторонних» факторов нейтрализуется, и систематическое смещение отсутствует. В реальности, как показано в обсуж­дении выборочного метода, мы редко можем реализовать простую вероятност­ную выборку, довольствуясь каким-то приемлемым и экономичным компромис­сом между случайным отбором, стратификацией и квотированием.

Контрольная и экспериментальная группы, используемые в эксперименталь­ных планах для сравнения и выявления эффекта некоего причинного фактора, «отбираются» в выборочных обследованиях на стадии анализа, апостериорно. Фактически они «конструируются» исследователем ad hoc в ходе сравнения подвыборок, выделенных с помощью фиксации разных уровней одной (или нескольких) объяснительных переменных.

В целом опросные методы обладают рядом существенных достоинств:

1) позволяют достаточно быстро получить большой массив наблюдений, причем каждый индивидуальный «случай» (отдельное наблюдение) опи­сывается с помощью целого набора теоретически релевантных переменных признаков;

2) стоимость выборочного опроса оказывается сравнительно небольшой, если принять во внимание объем получаемой информации;

3) использование стандартных опросных процедур и однородных количественных показателей при соблюдении определенных условий позволяет не только проверять гипотезы о причинных зависимостях, но и про­водить вторичный и сравнительный анализ результатов.

Недостатки, также присущие этому методу, мы проанализируем в следующих разделах.

2. Выбор исследовательского плана

Даже в том случае, когда исследователь четко осознал, в чем заключаются со­держательные вопросы, на которые он хочет получить ответ в ходе выборочно­го обследования; ему не стоит торопиться составлять анкету и нанимать интер­вьюеров. Прежде ему нужно поразмыслить над тем, какого рода логику анали­за данных он собирается использовать, после того как эмпирические данные будут получены. Для того, чтобы сведения о людях, группах или сообществах (об их поведении, установках или других чертах) можно было рассматривать в качестве доказательства каких-то теоретических гипотез, следует сначала ре­шить, что именно можно считать доказательством в данном случае, по каким правилам будут строиться логические сопоставления и статистические выво­ды, иными словами, необходимо выбрать принципиальный исследовательс­кий план.

В главе 4 довольно подробно говорится о том, как различия в логике и целях анализа влияют на выбор плана эксперимента. В планировании выборочного опроса исследователи исходят приблизительно из тех же соображений: сравне­ние «случаев», подгрупп, сравнение типа «до — после». Здесь мы рассмотрим лишь самые общие типы исследовательских планов, используемых в выбороч­ных опросах (другие проблемы планирования детально анализируются в гла­ве 7, посвященной построению выборки).

Первый шаг в планировании опроса — это принятие решения о том, что счи­тать единицей анализа. В простейшем случае мы стремимся приписать каждо­му индивиду (респонденту) определенное значение по каждой переменной. Предположим, наша цель заключается в том, чтобы на основании опроса 2000 респондентов узнать, как распределены в генеральной совокупности «партийная принадлежность», «судимость» и некоторые другие переменные, а кроме того, мы собираемся проанализировать связь этих переменных с по­лом, возрастом и семейным статусом. Некоторые из переменных будут строго количественными, другие будут описываться как качественные признаки. В любом случае нам нужно будет охарактеризовать каждого респондента по каж­дой переменной. В результате мы сможем построить структурированную мат­рицу данных, подобную той, что изображена в табл. 5.1. В столбцах этой мат­рицы содержится вся информация о респондентах, которые здесь и являются единицами анализа (или «случаями»). Именно их свойства нам предстоит оце­нивать, сравнивать в поисках взаимосвязей и т. п.

Таблица 1

Пример матрицы данных типа «респонденты х переменные»

«Случай» 1-й респондент 2-й респондент …… 2000-й респондент
Переменная
Пол мужской женский ……. мужской
Возраст 38 лет 23 года ……. 62 года
Семейный статус разведен замужем ……. вдовец
Судимость отсутствует отсутствует ……. 2 судимости
Партийная конституционный беспартийная ……. христианский
принадлежность демократ социалист

Обычно единицами анализа, т. е. теми, кого исследуют, бывают именно люди. Однако единицами анализа могут быть и семьи, и организации, и регионы, и государства. Например, в матрице данных столбцы могли бы соответствовать городам, а строки — переменным типа «уровень пре­ступности», «население», «число безработных» и т. п. Некоторые из пе­ременных были бы получены путем агрегирования, «объединения», ин­дивидуальных данных (например, о наличии дополнительных источни­ков дохода), другие характеризовали бы город как целое (наличие аэропортов, доля прямых налоговых поступлений в бюджете). В любом случае исследователю нужно заранее представить себе, как будет выг­лядеть матрица данных и какие приемы анализа он собирается к ней применить. Любое конкретное исследование может предполагать и использование различных единиц анализа, т.е. полученная в нем эмпирическая инфор­мация может характеризовать и отдельных индивидов, и семьи, и — в результате использования агрегированных показателей — регионы или государства. Важно лишь, чтобы все единицы анализа, которые вы на­мерены использовать, были определены заранее. В ином случае в мат­рице данных «единица анализа х переменная» неизбежно возникнут про­пуски или дублирование одной и той же информации. Так как количе­ство матриц данных равно количеству предполагаемых единиц анализа (хотя размерность их будет разной[3]

), можно заранее создать соответствую­щее количество отдельных массивов данных (файлов), содержащих те данные, которые относятся к данной единице анализа. Скажем, сведения о возрасте по­падут в массив «респонденты», а сведения о составе семьи — в массив «семьи» (даже если последние и были получены в результате беседы с одним из членов семьи).

Описанная выше двумерная матрица данных типична для одномоментного, «срезового» исследования, характеризующего ситуацию в момент опроса. Целью такого исследования может быть, во-первых, описание распределения каких-то переменных в совокупности. Например, мы можем узнать, сколько человек со­бирается проголосовать за демократов при условии, что выборы будут проведе­ны тотчас же (типичный «гэллаповский» опрос). Во-вторых, мы можем попы­таться использовать «срезовые» данные для характеристики отдельных подвыборок — например, «работающих пенсионеров», «высококвалифицированных рабочих в возрасте от 30 до 45 лет» и т. п. Далее, применяя различные методы статистического анализа, можно проверить какие-то гипотезы о взаимосвязи переменных (в данный момент времени). В последнем случае исследование становится объяснительным. Однако даже в чисто описательном исследовании мы столкнемся с необходимостью каких-то сравнений, делающих полученные нами оценки осмысленными. Если, например, мы узнаем, что 15% подростков читают медицинские журналы не реже 1 раза в месяц, то для того, чтобы по­нять много это или мало, нам нужно будет с чем-то сопоставить этот показа­тель. Скажем, мы можем сравнить подростков 1994 года с подростками 1954 года. (Конечно, нам предварительно придется найти данные соответствующего оп­роса 40-летней давности.)

Изменениям во времени подвержены не только отдельные показатели, но и вза­имоотношения между переменными. Так, глобальные социально-экономичес­кие изменения — экономический кризис, сдвиг в социально-классовой струк­туре — могут привести к тому, что высокая зависимость дохода от продолжи­тельности образования станет незначимой. Следовательно, изучение сложного причинного механизма воздействия образовательного уровня на доходы требу­ет какой-то серии разделенных во времени обследований, позволяющих про­следить динамику интересующего нас отношения под влиянием существенных внешних переменных.

Исследовательские планы, позволяющие анализировать данные во временной перспективе, называют лонгитюдными. Данные получают многократно, в раз­ные моменты времени, причем цели исследования могут быть сугубо дескрип­тивными (доля голосующих за коммунистов, распределение положительных и отрицательных установок по отношению к «мыльным операм») и объяснитель­ными.

Принято выделять основные виды лонгитюдных планов, каждый из которых имеет множество модификаций и «переходных» форм. Это трендовые, когортные и панельные исследования.

Трендовые обследования ближе всего к уже описанным однократным, «срезовым», опросам. Некоторое авторы даже предлагают обозначать их просто как регулярные опросы, т. е. опросы, проводимые через более или менее равные промежутки времени[4]

. В трендовом опросе одна и та же генеральная совокупность изучается в разные моменты времени, причем каждый раз выборка стро­ится заново. Иными словами, анализируются последовательные выборки из одной и той же совокупности. Например, опрос Института Гэллапа, проводи­мый ежемесячно в ходе избирательной компании, является трендовым обсле­дованием, показывающим динамику установок населения по отношению к кан­дидатам или партиям. Строго говоря, если количество тех, кто собирается голо­совать за кандидата X, за месяц увеличилось на 16%, мы можем лишь зафиксировать изменение картины предпочтений избирателей, но не можем наверняка утверждать, что определенная группа избирателей изменила свои предпочтения, так как в двух последовательных опросах мы имеем дело с раз­ными респондентами. Преимуществом оперативных трендовых исследований является возможность «привязки» наблюдаемых изменений к текущим собы­тиям — политическим скандалам, решениям правительственных органов, изменениям в финансово-экономической ситуации, — что облегчает их интерпре­тацию.

Однако, например, ежегодные исследования занятости и безработицы, прово­димые по этому плану, могут привести к трудно интерпретируемым результа­там. Если в результате двух таких исследований окажется, что социально-де­мографические характеристики людей, получающих пособие, почти не изме­нились, будет большой неосторожностью утверждать, что существует какая-то «типичная» группа людей, постоянно живущая на средства налогоплательщи­ков. Вполне вероятно, что большинство респондентов, охваченных первым оп­росом, уже нашли работу.

В качестве особого исследовательского плана иногда рассматривают когортные обследования. Основания для выделения этого плана несколько условны и связаны скорее с теоретической логикой интерпретации (а не сбора) данных. Если в трендовых исследованиях отбор каждый раз производится из общей со­вокупности — всех избирателей, всех семей и т.п., — то, исследуя «когорты» (от лат. cohors (cohortis) — подразделение, видовая группа), мы каждый раз про­изводим отбор из одной специфической совокупности, стремясь проследить пе­ремены в ее поведении, установках и т. п. Пусть, например, мы изучали ценно­стные ориентации десятиклассников в 1985 году, а в 1995 году нам захотелось снова опросить бывших десятиклассников, так как мы предполагаем, что их ценностные ориентации изменились с переходом в иную стадию жизненного цикла (создание собственной семьи, формирование профессиональной идентичности и т. п.). В этом случае мы будем работать с новой выборкой из пре­жней специфической совокупности, сравнивая представителей одной и той же «когорты» с десятилетним интервалом, а не десятиклассников 1985 года с деся­тиклассниками 1995 года (в последнем случае можно было бы говорить о трен­довом исследовании десятиклассников).

Самым совершенным воплощением идеи введения временной перспективы в исследовательский план является панельное обследование. Если вернуться к нашей структурированной матрице данных (см. табл. 5.1), то можно сказать, что панель — это прибавление к двумерной матрице еще одного измерения, превращающего ее в пределе в некий «параллелепипед» данных. Панельные ис­следования позволяют не только зафиксировать какие-то социальные измене­ния в установках, поведении и т. п., но и выявить причины и последствия этих изменений на микроуровне, т. е. на уровне отдельных индивидов. Если трендовое исследование показывает, что десятая часть потребителей, предпочитав­ших отечественные макароны, «переметнулась» к поклонникам спагетти, мы не можем точно определить, кто из респондентов изменил свои предпочтения и, следовательно, каковы общие характеристики «перебежчиков». Таким обра­зом, мы лишены возможности проверить, какие объяснительные переменные позволяют предсказывать динамику предпочтений на микроуровне.





Время, t

Рис. 2. Элементарный план панельного исследования

(два замера — две матрицы данных)

Панельное исследование — это многократное обследование одной и той же выборки из генеральной совокупности в разные моменты времени. Эту много­кратно используемую выборку и называют панелью. Исследовательский план, использующий панель респондентов, — весьма дорогостоящее предприятие, требующее к тому же очень тщательной проработки всех деталей до начала опроса. В трендовом и когортном исследовании данные нередко сравниваются с данными других опросов, проводившихся ранее иными исследовательскими группами. Этот путь проще и дешевле, однако сравнимость результатов обсле­дований, планировавшихся разными исследовательскими командами и — чаще всего — для разных целей, всегда проблематична. Возможность оценки «чисто­го эффекта» и величины наблюдаемых изменений — большое преимущество панельного плана. Однако эта возможность прямо зависит от величины усилий, предпринятых социологами для сохранения неизменности самой панели и инструментов сбора данных. Если, например, в первой волне панели (волной обычно называют один полный цикл опроса панели, один «замер») социолог позабыл включить в список для ранжирования тяжести преступлений квартир­ные кражи, то использование дополненного списка во второй и третьей волнах не поправит дела: сопоставимость полученных в панели ранжировок будет ни­чуть не выше, чем в случае обычных «срезовых» обследований, при более вы­соких затратах. Поэтому панельные исследования чаще всего используют как очень точное средство проверки конкретных гипотез в отчетливо очерченной предметной области. Выбор панельного плана в случае пилотажных или поис­ковых исследований совершенно неоправдан.

Панельные исследования незаменимы в проверке причинных гипотез, особен­но в тех случаях, когда отсутствует «естественный» критерий для разделения независимой и зависимой переменных во времени. Например, множество «срезовых» исследований может демонстрировать устойчивую высокую корреля­цию между систематическим потреблением алкоголя и проявлениями социаль­ной дезадаптации (развод, потеря статуса и т. п.), однако лишь длительное па­нельное исследование может дать необходимый материал для того, чтобы решить, ведет ли алкоголизм к дезадаптации либо, наоборот, является ее следствием. Панельные исследования незаменимы и для анализа более сложных причинных моделей с отсроченными эффектами (лагами), петлями «обратной связи» и т. п.

Основным преимуществом панельного плана с сугубо статистической точки зрения является возможность отделить реальные изменения показателей от разброса, связанного с ошибкой выборки.

В случае «непанельного» опроса (трендовый опрос, сравнение данных двух независимо проведенных «срезовых» опросов) какое-то различие между двумя последовательно опрошенными выборками, значимое на 5%-м уровне, скажем, различие между 49 и соответственно 54% предпочитающих «сильную руку» институтам представительной демократии с вероятностью, превосходящей 1:20, будет связано с выборочной ошибкой, а не с радикальными переменами в поли­тической атмосфере. Аналогичные данные панельного исследования позволя­ют говорить о наличии реальных изменений.

Однако не следует считать, что любое реальное изменение, фиксируемое в па­нельном опросе, также подлежит содержательной интерпретации с использо­ванием теоретически «привлекательных» переменных. Во-первых, наша па­нель — это всего лишь выборка среди других возможных выборок (других воз­можных панелей). Используя панельный план, мы уменьшаем влияние ошибки выборки на значимость различий между двумя волнами, но не исключаем ошиб­ку выборки полностью: результаты сравнений для второй (девятнадцатой, двад­цатой...) панели могли оказаться иными. Далее, фиксируемые изменения мо­гут быть связаны с низкой надежностью нашего измерительного инструмента, о чем мы еще будем говорить при обсуждении проблем измерения. Наконец, наша интерпретация результатов может оказаться необоснованной из-за изменений в самой панели. Полезно помнить, что панельное исследование по логике анализа результатов ближе всего стоит к простейшему экспериментальному плану типа «до — после». Малоприятным продолжением этого достоинства является подверженность панельного плана тем же угрозам систематического смещения (см. гл. 4). В частности, эффекты «созревания» участников панель­ного опроса были неоднократно продемонстрированы даже в таких нейтраль­ных сферах, как изучение семейного бюджета или чтение газет и журналов. После двух-трех волн члены панели достоверно чаще фиксируют свои ежед­невные расходы и начинают тратить на чтение газет на 10—15% больше време­ни. Перемены в политических установках и поведении обычно носят еще более драматический характер: политические симпатии смещаются к крайним полю­сам, доля активно участвующих в выборах возрастает. Основным механизмом, отвечающим за этот эффект, является стремление индивидуума к когнитивно­му балансу, к поддержанию высокой степени согласованности между собствен­ными высказываниями и действиями. Соответственно описываемый тип сме­щения резче выражен в панелях с маленькими интервалами между волнами. По мере увеличения промежутков между последовательными опросами — по край­ней мере, до 1—2 лет — эффект «созревания» уменьшается, так как все сильнее становится влияние направленных в противоположную сторону эффектов «па­мяти» (вернее сказать, «забывания»): респонденты просто плохо помнят, что они говорили год или десять лет тому назад.

К сожалению, именно в тех случаях, когда панельный план социологического исследования более всего осуществим и его применение возможно и обосно­ванно — и с точки зрения логики анализа, и по реальным возможностям внеакадемического финансирования, — тактика увеличения интервалов между цик­лами панели может оказаться неосуществимой. Пример тому — предвыборные опросы, где интервалы бывают равны 1—2 неделям и редко превышают 1—1,5 месяца.

Так, интерпретация классического «Народного выбора», проведенного П. Лазарсфельдом и его соавторами исследования президентских выборов в США в 1940 году[5], остается неоднозначной, хотя его основные результаты были много раз воспроизведены другими исследователями. Панель Лазарсфельда состояла из семи волн, разделенных месячным интервалом. Столь сложный план требовался для того, чтобы проследить, как меняются предпочтения американского электората в ходе выборной кампании, и какие факторы влияют на изменение решений отдельных избирателей. Самым поразительным результатом исследования оказалось то, что почти половина опрошенных ни разу не меняла свои политические пред­почтения на протяжении полугода. Вероятно, немалую роль в формировании столь обширной группы «непоколебимых» сыграли описанные эффекты «созревания» в результате участия в панели.

Самый серьезный и распространенный тип смещения связан, однако, с другой постоянной проблемой всех панельных планов — проблемой «выбывания» из панели (или, что звучит несколько мрачно, со «смертностью», или «истощени­ем», панели). Истощение панели проявляется в увеличении неучастия и «не­ответов» респондентов от первой волны к последующим. Некоторые респон­денты оказываются недоступными для контактов: они меняют место житель­ства, болеют, умирают. Другие участники панели просто отказываются от следующего интервью. В результате и репрезентативность панели, и эффектив­ный объем параллелепипеда данных, т. е. реальная возможность сравнивать ответы одного респондента в разные моменты времени, резко снижаются от волны к волне (хотя расходы на поддержание панели продолжают расти). Особенно неприятна ситуация, когда «вымирают» определенные социально-демог­рафические группы респондентов, что приводит к непоправимым систематическим смещениям. Эта ситуация возникает не так уж редко. Исследователи, работающие в коммерческих опросных фирмах, неоднократно замечали, что в рыночных исследованиях и исследованиях аудитории газет и журналов самой высокой «смертностью» отличаются молодые участники панели, особенно уча­щиеся-юноши в возрасте 18—25 лет. Иногда даже увеличение платы за участие в панельном опросе с каждой последующей волной не влияет на выбывание (это должно служить слабым утешением академическим исследователям, ли­шенным возможности платить респондентам).

В больших общенациональных панелях. Приближающихся к «микропереписям», для борьбы с выбыванием иногда используют метод самовосстановления, особенно в случаях. Когда выборочной единицей является семья, домовладение, организация и т.п. Например, в проводимом с середины 1960-х гг. Мичиганским университетом исследовании бюджета американских семей (PSID) ежегодно опрашивается более 5000 семей. Каждый отделившийся член семьи (например. взрослый сын, решивший жить отдельно от родителей) остается в выборке в качестве новой единицы наблюдения, так что выборка остается репрезентативной по типам семей, возрасту их членов и т.п. Выбывание из этой панели за первые десять лет составило 28% исходной выборки (кстати, это совсем немного для панельного опроса), однако за счет самовозобновления, т.е. включения в выборку «отселившихся» членов семей, абсолютный размер панели за это же время даже вырос с 5000 до 5860 семей[6].

Очевидно, что панельные исследования очень сложное, хотя и эффективное, средство проверки социологических гипотез. Вышеприведенные соображения вполне объясняют, почему панельный план используется реже других типов исследовательского плана. Панельный план практически доступен лишь для достаточно крупных исследовательских организаций и требует привлечения значительных материальных и финансовых ресурсов[7], однако он абсолютно незаменим при исследовании социальных эффектов исторических изменений, сложных причинных моделей индивидуального выбора, процессов социализации и т.п. Многие социологи полагают, что оптимальным решением является использование комбинированных исследовательских планов, сочетающих в себе некоторые черты «срезовых», трендовых и панельных опросов. Самый простой из таких планов это ретроспективное панельное исследование, когда опрос проводится однократно. Однако включает большое количество вопросов о прошлом респондента. Например, в исследованиях профессиональной мобильности респондентов спрашивают о деталях их карьеры, периодах безработицы, причинах изменения места работы и т.п. Реконструированные таким образом «профессиональные биографии» анализируют так, как если бы они были получены в лонгитюдном обследовании. Возникающие здесь проблемы связаны, в первую очередь, с субъективными погрешностями припоминания, с изменением точки зрения на события прошлого, иногда с намеренным искажением информации. Так, использование ретроспективного плана в изучении зависимости социально-экономического статуса от образования может вести к неверным выводам: доказано, что большинство людей имеет склонность задним числом «завышать» свои успехи в обучении. Однако этот тип плана может оказаться достаточно эффективным, например при сравнительном изучении динамики занятости замужних и незамужних женщин. Основное достоинство ретроспективного плана радикальное решение проблемы выбывания.

Более сложные типы комбинированных планов используют в микро-переписях, общенациональных обследованиях занятости и безработицы, преступности и т.п. Очень эффективны циклические планы с замещением, где в каждой последующей волне какая-то доля исходной выборки «отдыхает», будучи замещенной новой эквивалентной подвыборкой. Скажем, если в ежегодном опросе треть панели каждый раз замещается, то каждая из исходных «третей» будет опрошена от одного до трех раз, прежде чем состав участников полностью об­новится. «Поперечный» и «продольный» анализ позволит и учесть эффекты участия (при сравнении результатов «кратковременных» и «длительных» рес­пондентов), и дать текущую картину распределения переменных по социальным группам, и зафиксировать резкие изменения. Иногда часть вопросов предъявляется лишь сравнительно небольшой подвыборке, имеющей характеристики «фокусной» группы (например, только матерям-одиночкам, получающим социальные пособия), что позволяет проанализировать динамику поведения и мнений «труднодоступных» популяций. Нередко общую базу данных поддер­живает и анализирует одна исследовательская группа, а для анализа «периферийных» тем и специфических подвыборок привлекаются эксперты из других институций. Объективная логика развития регулярных опросов, основанных на комбинированных исследовательских планах, явно ведет к созданию меж­дисциплинарных, многоцелевых проектов и баз данных, имеющих множество источников финансирования (таковы, например, некоторые общенациональные лонгитюдные исследования преступности, здоровья населения). Соответствен­но все выше ценятся услуги методологов, специализирующихся в планирова­нии исследований, стандартизации показателей, социологическом измерении.

3. Концептуализация и измерение: общий обзор

Избрав определенный исследовательский план, социолог может сказать, что он будет рассматривать в качестве «случаев» в структурированной матрице дан­ных (табл. 5.1) и какой будет логика сравнений между случаями на стадии ана­лиза. Теперь ему предстоит решить, какими будут его исследовательские пере­менные — строки матрицы данных — и как будет осуществлен переход от тео­ретического понятия к измеряемому показателю. Решение этих двух взаимосвязанных проблем — концептуализации и измерения — необходимое условие перехода к разработке анкеты, плана интервью, схемы эксперимента и к сбору данных. Отметим сразу, что речь идет лишь о предварительном решении, так как многие исследовательские задачи, связанные с измерением и ис­толкованием теоретических конструктов, возникают позднее, на стадии анали­за данных (и будут рассмотрены нами в соответствующих разделах).

Понятия социологической теории скажем, «отчуждение», «культура беднос­ти», «социальный статус» или «коронарный тип личности»[8] — используются в качестве элементов для построения неких теоретических моделей, описываю­щих отношения между понятиями. Предположения о характере таких отноше­ний — это собственно исследовательские гипотезы.

Сложная структура социологических теорий не позволяет говорить о простой и однозначной их проверяемости. Как говорилось ранее (см. гл. 1), правдоподо­бие гипотез оценивается не в каком-то абсолютном смысле, а лишь относитель­но целой совокупности других вспомогательных гипотез, явно или неявно свя­занных с теоретическим «ядром». По этой причине сколько-нибудь разработанные теоретические модели оказываются довольно сложными, и их пред­варительное описание (спецификация) — это необходимое условие любой эмпирической проверки.

Эмпирическое «истолкование» теоретических понятий в качестве переменных в матрице данных (их концептуализация) и перевод этих понятий на язык на­блюдаемых признаков, т. е. измерение, могут оказаться довольно сложными процедурами, в чем-то сходными с процедурами построения теоретической модели. На первый взгляд, некоторые типы переменных не создают вовсе ника­ких проблем для измерения, так как они очень близки к тем способам категори­зации, которые мы употребляем в повседневной жизни (например, пол, воз­раст). Другие же, более абстрактные теоретические конструкты — отчуждение, социально-экономический статус или расовая сегрегация, — явно требуют боль­шего, чем формулировка одного показателя или одного вопроса анкеты. Ясно, что уточнение теоретического понятия и поиск соответствующих индикаторов в этом случае может быть только результатом специальной аналитической работы. Конечная цель такой работы — создание модели измерения, в которой бу­дут определены (специфицированы) все предполагаемые связи между теорети­ческим конструктом (понятием) и теми эмпирическими показателями, которые мы намерены использовать для его измерения. В этой модели нам придется также сделать некоторые предположения о возможных ошибках измерения (их случайном или систематическом характере). Ведь в действительности даже срав­нительно простые и очевидные показатели, фиксируемые с помощью одного стандартного вопроса, могут быть подвержены влиянию не только случайных ошибок, связанных с невнимательностью или погрешностями выборочной процедуры. Может быть, например, незамужние женщины склонны систематичес­ки занижать свой возраст? Если обратиться к «случаю Агнессы», описанному в главе 3, можно увидеть, что даже биологический пол в некото­рых случаях трудно определить однозначно. Пример столь простого признака, как «пол», позволяет увидеть и другую сторону проблемы: прежде чем искать подходящий показатель, нужно решить, как мы намерены интерпретировать соответствующее понятие в нашей теории. Если мы, к примеру, собираемся проверить гипотезу о влиянии половой идентичности на социальные достиже­ния, то нам недостаточно просто разбить наших респондентов на «муж.» и «жен.»: внутригрупповой разброс показателей успешности наверняка окажет­ся очень велик и вся наша объяснительная схема «поплывет». В действительно­сти нам лучше интерпретировать «половую идентичность» как некий континуум, плавный переход от одного жесткого полоролевого стандарта к другому, от край­ней «маскулинности» к «фемининности». Используя соответствующие показатели и шкалы, мы скорее всего обнаружим, что большего социального успеха добивают­ся люди, не следующие жестким предписаниям традиционной половой роли.

Итак, первый шаг в поиске индикаторов для теоретических понятий — это прояснение самих понятий. Теоретические переменные, в отличие от платонов­ских идей, не существуют «сами по себе», ожидая когда мы наткнемся на них. Они не имеют какого-то абсолютного, раз и навсегда определенного значения. Их значение определяется контекстом употребления, концептуальной схемой, которую мы используем. Например, если мы используем «религиозность» как понятие, характеризующее роль некой конфессии в политическом укладе национального государства, наибольший интерес для нашего исследования могут представлять агрегированные (т. е. относящиеся к надындивидуальному уровню) переменные, показывающие роль церкви в поддержании нормативной системы общества, в принятии политических решений. Показателями здесь могут быть количество церковных приходов, наличие обязательных уроков закона божьего в государственных школах, участие церковных иерархов в работе законодательной власти и т. п. Если целью нашего анализа является индивидуальная «религиозность», то нас скорее заинтересует широкий спектр поведения и установок от институциональной религиозности, связанной с участием в цер­ковных обрядах, верой в спасение души и т. п. до расплывчатой убежденности в том, что «существуют некие сверхъестественные силы», или даже до устойчивого интереса к астрологическим прогнозам.

Конечно, мы можем заключить, что отсутствие абсолютного, самоочевидного смысла в теоретических понятиях дает нам полную свободу в их определении. Но такое заключение будет ошибочным. Во-первых, теоретическое понятие, неповторимый смысл которого известен только самому теоретику, обладает все­ми достоинствами, кроме одного — оно больше не может служить средством коммуникации. Дабы этого не случилось, лучше всего давать определения, по­нятные не только вам, но и другим: все же наука — это коллективное предприя­тие. Более того, нужно соотносить собственные определения понятий с теми, которые использовались вашими предшественниками, в том числе и теми, чьи теоретические взгляды противоположны вашим. Ценность теоретического по­нятия — в его включенности в более широкую сеть теоретических представлений, во множестве связей с другими понятиями. Попытки начать с «нулевой ступени» ни к чему хорошему не ведут. Даже если вам отвратителен марксизм как идеология тоталитаризма, невозможно сказать что-то содержательное и интересное о таких вещах, как «классы» или «отчуждение» без учета того, что сказал о них Маркс.

В работе по уточнению теоретических понятий можно выделить три стадии. На первой стадии нужно составить по возможности полный список существу­ющих определений интересующего нас понятия. Основной путь здесь — ана­лиз литературы. Часто приходится анализировать и те смыслы, которые при­даются какому-то понятию в обыденной речи: понятия повседневного язы­ка редко обладают достаточной степенью формальной строгости, но их многозначность иногда позволяет выразить неочевидный и нетривиальный взгляд на вещи. Например, анализ того контекста, в котором употребляются понятия «стресс» или «психологическая травма», открывает широкий диапазон жизненных событий — от развода до потери работы. Если мы изучаем влияние травмирующих жизненных событий на рост хронической заболеваемости, нам не обойтись без анализа субъективного смысла различных событий для разных людей. На этом этапе могут оказаться полезными неформальные глубинные интервью, групповая дискуссия, анализ доступных биографических материа­лов и т. п. В результате описанной работы по обобщению существующих опре­делений (научных и обыденных) мы получаем возможность исходить из доста­точно общего и разделяемого большинством исследователей определения. Так, в работе Дж. Хиллери[9] перечислено 94 определения понятия «сообщество» (community), большая часть которых включает три основных признака: локаль­ная область расселения; общие связи, основанные на чувстве идентичности с группой; социальное взаимодействие.

На второй стадии мы осуществляем и обосновываем свой выбор трактовки понятия. Обоснование необходимо и в том случае, если мы решили использо­вать общепринятое определение, и тогда, когда нами предложено нечто абсо­лютно новое. Позднее, в ходе анализа данных, наша теоретическая модель ско­рее всего будет уточняться, но и в сборе, и в анализе данных мы будем руковод­ствоваться принятым рабочим определением. Так, если мы решим, что социологический смысл понятия «профессия» заключается в способе регуля­ции рыночных условий в пользу определенной группы, ограничивающей и контролирующей доступ новых членов в свои ряды, мы скорее всего сосредоточим свое внимание на таких аспектах профессионализма, как автономия, контроль над процессом определения «внештатных» ситуаций и приписыванием ответ­ственности, обучение новичков и управление «публичным» образом професси­ональной группы. При этом мы, возможно, не уделим того же внимания таким аспектам профессионализма, как отношения с потребителями товаров или ус­луг, контроль над определенными ресурсами и т. п.

Большинство полученных нами определений будут многомерными, т.е. они будут включать в себя более одного аспекта или измерения. Поэтому на тре­тьей стадии следует отчетливо очертить существующие аспекты понятия и, возможно, выбрать те из них, с которыми мы собираемся работать. Во-первых, выделение отдельных измерений в многомерном теоретическом понятии необ­ходимо для того, чтобы найти соответствующие индикаторы для каждого из измерений. Во-вторых, в социологии мы часто используем категориальные пере­менные, состоящие из множества взаимосвязанных признаков, т. е. двух, трех или более качественных категорий. Примерами здесь могут служить пол, про­фессия, семейный статус, религиозная конфессия и т. д. Нередко признаки, со­ставляющие категориальную переменную, могут быть упорядочены по какой-то ординальной шкале. Скажем, социальный статус может быть низким, средним или высоким. Анализ размерности теоретического понятия, представляемого с помощью такой категориальной переменной, позволяет выявить различия между упорядочениями категорий по разным измерениям. Упорядо­чение религиозных конфессий по престижности будет отличаться от их упоря­дочения по степени религиозного фундаментализма. Сделав явным это разли­чие между смысловыми измерениями теоретического понятия, мы обезопасим себя от ошибочных выводов о характере взаимосвязей данной переменной с другими, т. е. от ошибок на стадии анализа данных.

Прояснив теоретические понятия, используемые в нашем исследовании, мы переходим к следующей важной задаче — поиску конкретных индикаторов для этих понятий. Нередко эту стадию работы называют стадией операционализации понятий (о том, почему это обозначение является не вполне точным, будет сказано чуть ниже). Если, скажем, в исследовании профессиональной мобиль­ности ученых мы используем понятие «престижность университета», нам не­обходимо решить, в чем, собственно, выражается престижность: в высоком проходном балле на вступительных экзаменах, в количестве ежегодно проводи­мых международных конференций, в среднем индексе цитирования для профессоров и преподавателей? Возможно, полезной для определения престижно­сти будет экспертная процедура — например, престижность американских уни­верситетов определяется в ходе регулярных опросов ведущих специалистов в разных областях знания. Под операционализацией, таким образом, понимают процесс связывания теоретического понятия с эмпирическими наблюдениями, где последние выступают индикаторами, показателями каких-то свойств, от­носящихся к данному понятию. Предполагается, что, скажем, результаты оцени­вания респондентами престижности университетов показывают высокий или низ­кий престиж данного рода заведений приблизительно так же, как показания стрел­ки манометра показывают давление. Однако аналогия здесь весьма условна. Измерение в социологии обычно носит непрямой характер: отдельный индикатор может отражать влияние более чем одной переменной, а каждая переменная может иметь множество индикаторов, т. е. операциональные определения тео­ретических понятий в социологии отличаются от таковых, скажем, в физике.

Многие эмпирические индикаторы могут рассматриваться как взаимозаменяе­мые. Идея взаимозаменяемости индикаторов была впервые проанализирована П. Ф. Лазарсфельдом. Так как измерение носит непрямой характер, ни один из существующих индикаторов не будет совершенным или безупречным. Хотя в определенной исследовательской ситуации можно указать причины, по кото­рым один индикатор лучше другого, в сущности они взаимозаменяемы. «Ис­тинное значение» переменной — это какая-то функция значений показателя и ошибки измерения. Поэтому измерение значения переменной и проверка гипо­тез о связях между индикаторами требуют использования множества показате­лей (более детальное обсуждение этого вопроса содержится в главе 6). На прак­тике социологи чаще всего используют несколько индикаторов для каждой су­щественной теоретической переменной, объединяя их на стадии анализа в некоторый суммарный показатель (индекс), или строя шкалу. То, как соотно­сятся индикаторы и теоретическая переменная, описывается с помощью моде­ли измерения. В простейшем случае, когда все индикаторы (обозначаемые прописными латинскими буквами — Х1, Х2, X3, Х4) являются следствиями, результа­тами действия латентной, т. е. не наблюдаемой непосредственно переменной X, модель измерения будет выглядеть, как на рис. 3.

Обозначения a, b, с, d относятся к коэффициентам, показывающим влияние ла­тентной переменной на конкретный индикатор (они, как мы увидим позднее, выражают надежность этого индикатора), а е. (т. е. е1, е2, е3... и т. д.) — это

А b c d

Рис. 3. Модель измерения латентной переменной с четырьмя индикаторами

ошибка измерения i-гo индикатора. Для ошибок в этой модели предполагается, что они не скоррелированы друг с другом (cov (ei ej) = 0) и с истинным значени­ем X, а их средняя равна 0. В модели, представленной на рис. 3, все индикато­ры — это так называемые эффект-индикаторы, все они находятся под влияни­ем X, и сила связей a, b, с, d соответствует «силе» этого влияния.

Модели измерения с латентной переменной и эффект-индикаторами очень по­пулярны в социальных науках. Причина этой популярности в нашей склоннос­ти объяснять явные поступки людей, в частности, ответы на вопросы анкеты или выполнение тестовых заданий, неким внутренним свойством, качеством, навыком или предрасположенностью. Латентная переменная может быть, на­пример, интеллектом, измеряемым с помощью индикаторов-тестов. Другой пример: мы можем полагать, что участие в выборах и ежедневное чтение поли­тических новостей в газете — это индикаторы латентной «политической актив­ности» или «вовлеченности в политику».

Однако использование эффект-индикаторов — это не единственная возможность. Например, мы можем использовать такие индикаторы, как потеря работы, раз­вод, болезнь для измерения латентной переменной «жизненный стресс». В этом случае мине предполагаем, что латентная переменная является причиной своих индикаторов[10], скорее травмирующие жизненные события могут быть причи­ной стресса. Если мы имеем дело с какой-то из распространенных моделей со­циально-экономического статуса, в ней тоже будут присутствовать не эффект-индикаторы, а причинные (или формативные) индикаторы, т. е. индикаторы, значения которых детерминируют, определяют значение латентной перемен­ной. На рис. 4 изображена элементарная модель латентной переменной с при­чинными индикаторами (Yl — Y4 — это индикаторы, Y— латентная переменная).

Если Y — это социально-экономический статус (СЭС), то Yl — Y4 могут пред­ставлять собой доход, образование, престиж профессии данного человека и «качество» его жилья (стоимость, престижность района и т.п.).

Рис. 4. Модель измерения с латентной переменной

и причинными индикаторами

Ясно, что скорее доход является причиной СЭС, чем наоборот. Несмотря на кажущееся сходство моделей измерения, изображенных на рисунках 3 и 4, их «поведение» на стадии анализа будет очень разным. Разными могут оказаться и методы оценки качества индикаторов для этих моделей. Даже без специального анализа можно сказать, что в модели с эффект-индикаторами (рис. 3) всякий «хороший» инди­катор должен чутко реагировать на рост или убывание латентной переменной и изменяться «в согласии» с остальными. В модели, изображенной на рис. 4, дело обстоит не так просто: если, скажем, возрастет доход — возрастет и статус, но образование или профессиональный престиж вполне могут не измениться, ос­таться на прежнем уровне. Другое очевидное отличие связано собственно с от­бором индикаторов: для модели на рисунке 3 любой «хороший» (т. е. надежный и валидный, см. гл. 6) эффект-индикатор может заменить любой другой, и их общее число вполне можно сократить: скажем, высокие результаты выполне­ния одного «хорошего» теста интеллекта будут достаточно надежно предсказы­вать результаты бесчисленного множества других тестов. Если же мы попыта­емся убрать какой-то причинный, формативный индикатор, то изменится не только объем нашей анкеты — изменится сама латентная переменная, кото­рую эти индикаторы собственно и составляют: так, стоит «убрать» доход из числа индикаторов СЭС, как мы уже будем изучать что-то вроде социального, но уж никак не экономического статуса. Приведенные примеры позволяют по­нять, почему так важно явно задать модель измерения, связывающую индикаторы, которые мы собираемся отобрать, с теоретическими понятиями.

Многие реальные модели измерения еще сложнее только что описанных. Индикаторы могут быть скоррелированы между собой и, что хуже, с ошибками измерения, в число индикаторов могут одновременно входить и эффект-индикаторы, и инди­каторы-причины. Часто разработка модели измерения ведет к радикальному прояснению теоретических гипотез и понятий, которые на предыдущих стадиях иссле­дования носили чрезмерно абстрактный и общий характер. Так, социолог, стремя­щийся найти индикаторы, скажем, «межэтнической напряженности», попытается по меньшей мере разделить «причины» и «эффекты» среди таких показателей на­пряженности, как поселенческая сегрегация (склонность представителей этничес­ких групп к компактному и раздельному поселению) отсутствие семейных и дру­жеских связей с представителями «чужого» этноса, число столкновений и воору­женных конфликтов, недоброжелательное освещение «чужаков» в местной прессе и т. п. В ходе такой работы он наверняка сделает более ясными и отчетливо сформулированными свои представления о механизмах возникновения межэтни­ческой напряженности и ее последствиях.

В целом при поиске и отборе индикаторов полезно руководствоваться некото­рыми общепринятыми правилами:

I. Используйте индикаторы, применявшиеся в более ранних исследованиях. Существует множество устоявшихся и проверенных индексов (т. е. суммарных показателей) и шкал, свойства которых достаточно изве­стны. При возможности проверьте, насколько хорошо «работают» эти по­казатели в вашем случае, проведя небольшое разведочное (пилотажное) исследование. Сориентироваться в многообразии существующих показателей и шкал помогают соответствующие справочные издания и тематические обзоры[11].

2. Если общепринятого способа измерения для какого-то понятия не су­ществует, попытайтесь разработать множество индикаторов для различных определений понятия и проверьте, как различия индикаторов будут влиять на различия в интерпретации результатов. Имея дело с многомер­ным понятием, стоит подумать, какие именно измерения, аспекты поня­тия существенны в рамках вашей исследовательской гипотезы.

3. Обычно установки и мнения имеют более сложную структуру и требу­ют использования большего количества индикаторов, чем, например, поведенческие события. Конечно, решающее слово в определении количества индикаторов (количества вопросов в анкете) принадлежит практи­ческим соображениям. Пилотажные исследования, интервьюирование «фокусных» групп могут оказаться полезными в отборе индикаторов и исключении лишних вопросов. Они также важны для оценки надежнос­ти и валидности показателей (см. гл. 6).

Прежде чем перейти к практическим проблемам конструирования вопросов для анкет и интервью, мы коротко рассмотрим уровни измерения, так как общее представление об уровнях измерения понадобится нам при обсуждении логики построения вопросов и ответов и использования шкал.

4. Уровни измерения

Существует несколько концепций измерения, по-разному определяющих, что может быть названо операцией измерения. В гуманитарных науках — и социо­логия не является исключением — наибольшее влияние имеет репрезентационная концепция измерения, впервые детально обоснованная психофизиком С. С. Стивенсом. В этой концепции всякая операция измерения в конечном сче­те определяется как приписывание чисел вещам (свойствам, событиям) в соот­ветствии с определенными правилами, так что отношения между числами от­ражают (или представляют, репрезентируют) отношения между вещами. Та­ким образом, измерение представляет определенные свойства в виде чисел, поддающихся суммированию, сравнению и т. п. Однако наша возможность из­мерить какие-то эмпирически наблюдаемые свойства, представить отношения между вещами в виде чисел редко носит абсолютный характер. О некоторых эмпирических свойствах мы можем сказать, что они выражены «больше» или «меньше» для каждого конкретного наблюдения, но не можем указать случаи, когда это свойство абсолютно отсутствует: так, даже если испытуемый не ре­шил ни одной задачи, мы едва ли осмелимся утверждать, что он полностью лишен «интеллекта». Иногда наша способность измерять ограничена лишь воз­можностью отнести какую-то вещь (наблюдение) к определенному классу, при­чем между разными классами нельзя задать отношение порядка (больше — мень­ше). Иными словами, при измерении отношения между числами как-то зави­сят от отношений между вещами, и, следовательно, существуют ограничения для возможных преобразований чисел: игнорируя эти ограничения, мы теряем право утверждать, что наши числа что-то представляют, репрезентируют. Пра­вила приписывания чисел вещам, используемые нами в каждом конкретном случае, воплощают в себе эти ограничения и определяют достигнутый уровень измерения (номинальный, порядковый, интервальный, абсолютный).

Номинальные измерения

Номинальным измерением называют процесс отнесения объектов в классы. Все, что мы можем сказать об объектах, сгруппированных в один класс, — это то, что они идентичны в отношении некоторого свойства или признака, т. е. фактическое отношение между объектами — это отношение тождества (или различия). Для обозначения полученных классов могут использоваться и названия свойств, и числовые символы. Скажем, мы можем обозначать символом «0» мужчин, а символом «1» — женщин. Однако нельзя сказать, что признак «является мужчиной» в каком-то отношении меньше признака «является женщиной», или что «сумма одного мужчины и одной женщины равна единице». Хотя номинальные измерения довольно примитивны, они отнюдь не бесполезны, в чем мы убедимся при обсуждении методов анализа данных. Другими примерами номинального измерения могут служить на­циональность или место жительства.

Порядковые измерения

Измерение на порядковом (ординальном) уровне предполагает, что мы спо­собны упорядочить объекты по степени выраженности свойства или признака, т. е. определить для них отношение «больше-меньше». Например, мы можем говорить о низком, среднем или высоком социальном статусе или низкой, умеренной или высокой коммуникабельности. Однако в случае порядкового измерения мы не можем определить точно, насколько велико рас­стояние между соседними категориями. Иными словами, мы не можем ут­верждать, что человек, получивший оценку «3» по шкале популярности, в три раза более популярен, чем получивший оценку «1», или что расстояние между категориями «48» и «45» по порядковой (ординальной) шкале равно расстоянию между категориями «22» и «19». Иными словами, ординальное измерение задает отношение порядка между категориями какого-то свойства, но не позволяет говорить о том, «на сколько» или «во сколько раз» одна категория больше другой, т. е. ни точка отсчета (абсолютный ноль), ни единица измерения здесь не могут быть определены.

Интервальный уровень измерения

Об интервальном уровне измерения можно говорить тогда, когда мы спо­собны не только определить количество интересующего нас свойства в эм­пирических наблюдениях, но также определить равные расстояния между категориями, т. е. ввести единицу измерения. Соответственно числовое приписывание становится здесь менее произвольным: объекту (наблюдению) присваивается число, соответствующее количеству измеряемого свойства, т. е. мы можем установить отношения равенства уже не между самими объек­тами, а между интервалами числовой шкалы: равные разности чисел соот­ветствуют равным разностям значений измеряемого свойства или признака. Классический пример интервального измерения в физических науках — это измерение температуры по шкале Цельсия (или Фаренгейта). Единицы из­мерения — градусы — равны, однако «0» — это произвольная точка. При 0°С вода замерзает, однако свойство «иметь температуру» отнюдь не исчезает. Если нулевая точка неабсолютна, то бессмысленно утверждать, что 30°С предполагают в три раза больше свойства «температура», чем 10°С.

Шкала температуры Кельвина, как известно, начинается с абсолютного нуля, и этот абсолютный нуль имеет определенный физический смысл (вспомните термодинамику), так что можно даже сказать, что здесь «температура кончается». Шкала Кельвина — это шкала отношений. То же можно сказать и о физическом измерении расстояний, в частности, об измерении роста. Человек, имеющий рост в 2 метра, в два раза выше ребенка, чей рост 1 метр. Возраст человека, доход — другие примеры шкалы отношений.

Зачем учитывать уровень измерения?

Во-первых, отметим, что наше изложение существующих представлений об уровнях измерения — пусть оно и было далеко не полным[12], позволило заметить, что хотя приписывание чисел объектам возможно практически всегда, далеко не все операции над полученными числами будут иметь какой-то смысл. Соответственно далеко не все методы группировки и статистического анализа данных уместны для номинального или, скажем, интервального уровня измерения (с ними социологам чаще всего приходится иметь дело). Существуют различные техники анализа для разных уровней измерения переменных. Специальные методы построения социологических шкал, о которых будет говориться далее, также основаны на определенных представлениях о метрике переменных, т.е. об уровне их измерения. Все эти соображения должны быть приняты во внимание и при конструировании инструмента сбора данных, например, вопросника. Если мы хотим анализировать переменную «образование» по крайней мере на интервальном уровне, нам, вероятно, лучше использовать показатель «количество лет, затраченных на получение образования» и включить в анкету соответствующие вопросы. Однако если наша цель всего лишь показать, что лица с высшим образованием или ученой степенью чаще выписывают научно-популярные журналы, достаточно будет использовать привычные «ординальные» категории неполное среднее, среднее, высшее и т.п. (кстати, при анализе они, возможно, будут рассматриваться как номинальные).

Важно помнить, что каждая переменная может быть измерена на разных уровнях. Выбор определяется практическими соображениями, требованиями к качеству измерения (как правило, существует обратная зависимость между уровнем и качеством измерения, о чем еще будет говориться дальше), предполагаемой стратегией анализа данных. Практически всегда данные, позволяющие получить высокий уровень измерения, могут быть перегруппированы так, что уровень измерения станет ниже (обратное утверждение, к сожалению, неверно). Например, при анализе мы можем разбить наших респондентов на три возрастные категории, хотя в опросе использовали семь. Важно, однако, и то обстоятельство, что исследователь, использующий наши данные для вторичного или сравнительного анализа (возможно, мы и сами захотим к ним вернуться) сможет пользоваться «сырыми» более дробными категориями.

5. Общие правила конструирования опросников

Исследователь может использовать различные техники сбора данных: наблю­дение, контент-анализ, анкетный опрос, интервьюирование и т. п. Самой рас­пространенной техникой все же является опрос. Используемые в ходе опроса анкеты могут заполняться самими респондентами или специально обученны­ми интервьюерами. В любом случае каждый из респондентов отвечает на фик­сированные вопросы.

Используя стандартный инструмент сбора данных — анкету, опросный лист, социолог получает те сведения, которые позволяют заполнить матрицу данных «респонденты х переменные». Те пропуски в данных, которые возникли из-за неясности вопросов, неопределенной интерпретации ответов или нежелания людей отвечать на предложенный вопрос, обычно нельзя восстано­вить, вернувшись домой к респонденту. Поэтому так важно продумать заранее, какие вопросы следует задать.

Решающим соображением в выборе вопросов, которые будут заданы респон­денту, является осуществленный исследователем выбор индикаторов теорети­ческих понятий (см. выше): например, изучая влияние успехов в учебе на ком­муникабельность студентов, мы задаем конкретные вопросы об экзаменацион­ных оценках, числе друзей среди сокурсников, участии в самодеятельности, посещении студенческого бара и т. п. Если наше исследование является скорее объяснительным, чем сугубо описательным, полезно представить себе схема­тически ту теоретическую модель, которую мы намерены проверить, снабдив каждый теоретический конструкт «его» индикаторами.

Рассмотрим это на примере. Предположим, наша теоретическая модель сво­дится к простой гипотезе: люди, подвергавшиеся преступным посягательствам или бывшие свидетелями преступлений, т. е. имеющие «опыт жертвы», в боль­шей степени поддерживают применение высшей меры наказания. Схемати­чески наша гипотеза представлена на рис. 5.

Рис. 5. Схема, иллюстрирующая зависимость поддержки

смертной казни (ПСК) от «опыта жертвы» (ОЖ)

Естественно, мы постараемся найти достаточное число индикаторов и к неза­висимой («опыт жертвы»), и к зависимой (поддержка смертной казни) пере­менным. Разрабатывая понятие «опыт жертвы», мы можем решить, например, что здесь существенны не только реальные биографические факты, но и ин­формированность человека об уголовных происшествиях, основанная на об­щении с друзьями и близкими, устойчивый интерес к соответствующим сооб­щениям в газетах или теленовостях, а может быть, и некоторые психологичес­кие факторы — уровень тревожности, идентификация с жертвой и т. п. Выбирая индикаторы для зависимой переменной, мы должны будем по крайней мере учесть возможные различия в диапазоне и интенсивности выражаемой респон­дентами поддержки смертной казни, что также приведет нас к целому «вееру» прямых и косвенных показателей. Нельзя не признать, в частности, что суще­ствует какое-то различие между людьми, требующими расстрела на месте запорчу телефонного автомата, и теми, кто полагает, что единственным «показанием» к смертной казни может быть убийство при отягчающих обстоятельствах. Возможно, следует также признать существенным различие в силе убеждений между теми, кто поддерживает высшую меру «вообще», и теми, кто при необ­ходимости сам готов пристрелить преступника.

Каркас теоретической модели, изображенной на рис. 5, начнет таким образом обрастать какими-то операциональными индикаторами независимой и зависи­мой переменных, постепенно превращаясь в конкретную модель измерения (см. рис. 6).

(Отметим, что индикаторы независимой переменной в данном случае — это формативные индикаторы, т. е. индикаторы-причины.) Пропуски в схеме, пред­ставленной на рис. 6, подразумевают наличие других, не рассмотренных нами показателей. Отсутствие стрелки и вопросительный знак в связи «личностная тревожность — опыт жертвы» отражают не столько неясность направления этой причинной связи, сколько другое важное обстоятельство: в нашей теоретичес­кой схеме мы забыли учесть контрольные переменные, которые могут влиять на отношение между зависимой и независимой переменными или даже полно­стью определять это отношение. В разделе, посвященном анализу данных, мы увидим, как учет контрольной переменной может полностью менять характер наблюдаемой

Рис. 6. Дополненная схема для примера с поддержкой

смертной казни

связи. Пока же достаточно заметить, что личностная тревожность может быть опосредующей переменной, т. е. может оказаться, что связь «опыта жертвы» и «поддержки смертной казни» очень высока для высокотревожных опрошенных и совершенно незначима в других группах: действительно, люди с высокой личностной тревожностью[13]

склонны к аффективной переоценке даже незначительных происшествий, поэтому, при прочих равных, их «опыт» всегда будет обладать большей субъективной значимостью. Среди других возможных контрольных переменных почти всегда будут фигурировать фоновые социаль­но-демографические факторы, подобные возрасту, образованию, социальному классу и т.д.

В последнем утверждении нет ничего загадочного: принадлежность человека к устойчивой социальной группе — к тому же воспринимаемой другими людьми как таковая — в немалой степени «формирует» его поведение и установки, оп­ределяет горизонт нормативных ожиданий и т. п.

Достигнутая ясность теоретической схемы исследования (в нашем вымышлен­ном примере с поддержкой смертной казни — скорее недостаточная) дает нам вполне практический ориентир для отбора анкетных вопросов. Составляя ан­кету, мы, во-первых, включим в нее вопросы, позволяющие измерить зависи­мую переменную (переменные) и, во-вторых, постараемся убедиться в том, что все объяснительные, независимые переменные также переведены на язык со­ответствующих вопросов. В-третьих, мы осуществим поиск вопросов, относя­щихся к возможным контрольным переменным, не забыв о стандартных «паспортных» вопросах, которые будут касаться пола, возраста, рода занятий, обра­зования, семейного статуса и т. п., т. е. будут измерять фоновые переменные.

До сих пор мы говорили лишь об отборе вопросов, которые составят «ядро» нашего инструмента сбора данных. Теперь нам предстоит обсудить, как эти вопросы могут формулироваться и оцениваться и, кроме того, как из множества вопросов может быть составлен макет анкеты.

Специальные методические исследования показывают, что формулировка вопроса имеет решающее значение для качества данных. Но даже основываясь исключи­тельно на здравом смысле, можно предположить, что вопросы и предлагаемые под­сказки (альтернативы ответов) должны быть ясными, недвусмысленными и удобо­читаемыми. Каким бы ни был формат вопроса — открытым, полузакрытым или закрытым[14], — его словесная форма должна гарантировать возможность двусторон­ней коммуникации между исследователем и респондентом.

Д. де Вос свел те требования, которые обычно предъявляют к словесной фор­мулировке вопроса, в удобный контрольный список, которым можно руковод­ствоваться в практической работе[15]

. Мы изложим основные правила формули­ровки вопросов, руководствуясь этим контрольным списком:

1. В словесной формулировке вопроса следует избегать использования специальных терминов или сленга. Чаще всего специальные термины в вопросах — результат того, что социолог не смог достаточно отчетливо операционализировать исходное понятие, найти его эмпирические эквиваленты в повседневном поведении или высказываниях людей. Вопросы типа «Является ли Ваша семья нуклеарной?» или «Поддерживаете ли Вы либералистскую концепцию роли государства в экономике?» свидетель­ствуют о том, что ученый пытается решить свою теоретическую пробле­му посредством прямого опроса общественного мнения. Смешение соб­ственно исследовательского вопроса с вопросом к респонденту допустимо лишь в одном случае — в опросе экспертов, когда целью как раз и является расширение компетентности исследователя путем учета мнений высококвалифицированных специалистов. Использование жаргонных выражений обычно свидетельствует о стремлении социолога быть понятным, «своим», разделяющим проблемы опрашиваемых. Эти похвальные усилия нередко, однако, оказываются бесплодными, так как далеко не все респонденты принадлежат к одной и той же субкультуре, да и не всем придется по душе предложенный неформальный тон. Конечно, часть под­ростков сразу поймет, что имеется в виду, когда их спросят «Доводилось ли тебе баловаться „травкой"?», но это необязательно сделает их ответы более откровенными. Кроме того, многие могут просто не понять точный смысл вопроса.

2. Стремитесь к коротким формулировкам. При прочих равных, чем мень­ше слов в вопросе и предложенных альтернативах ответа, тем меньше шансов, что вас неправильно поймут. (Разумеется, и эту рекомендацию не стоит доводить до абсурда: вопросы не должны превращаться в на­меки.)

3. Проверьте, не является ли вопрос многозначным, т. е. не содержит ли он в себе двух или более различных по смыслу вопросов, на каждый из которых можно получить независимый ответ. Простой, на первый взгляд, вопрос — «Когда Вы в последний раз читали газету „Известия"?» — в действительности требует двух разных вопросов, первый из которых должен касаться того, читает ли человек данную газету вообще. Вопрос «Как ча­сто Вы и Ваша жена (Ваш муж) посещаете парфюмерный магазин?» сле­дует разделить по крайней мере на два вопроса, относящиеся к самому респонденту и его супруге (супругу).

4. Избегайте «подталкивающих» (или наводящих) вопросов, неявно ука­зывающих респонденту, какой ответ желателен. «Подталкивающий» вопрос заставляет респондента выбирать «правильный» или социально-желательный ответ. Безусловно «подталкивающими» будут, например, вопросы: «Примете ли Вы участие в выборах, если отказ людей участвовать в голосовании приведет к установлению диктатуры?» или «Поддержите ли Вы движение за равные права для сексуальных меньшинств даже в том случае, если будете опасаться, что кто-нибудь сможет развратить Ва­шего ребенка?». В менее очевидных случаях к «подталкиванию» могут вести прямые ссылки на мнение авторитетных или влиятельных людей (скажем, «Согласны ли Вы с мнением премьер-министра X...?»), исполь­зование слов, имеющих явную эмоционально-оценочную нагрузку (на­пример, «безответственные политики» или «рискованные средства»). Еще один способ навязать респондентам собственное мнение — это ограни­чение числа альтернатив ответа в закрытом вопросе или исключение позиций «другой ответ», «затрудняюсь ответить», «не знаю». Конечно, это значительно облегчает анализ данных, но исследование в этом случае становится просто дорогостоящим средством демонстрации вашей собственной точки зрения.

5. Без крайней необходимости не используйте выражения, содержащие в себе отрицание. Например, спрашивая респондента о согласии или несогласии с утверждением «Нельзя делать профилактические прививки взрослым без их добровольного согласия», мы не сможем уверенно утверждать, что означает ответ «нет» — несогласие с суждением или подтверждение согласия. Подобной путаницы не возникнет, если использовать утвердительную формулировку («Согласны ли Вы с тем, что нужно делать прививки взрослым даже в принудительном порядке?»). Если по каким-то причинам нужно все же сохранить форму отрицания, то выходом становится использование развернутых ответов (например, «Нет, принудительные прививки делать нельзя» и т. п.).

6. Вопросы, требующие особой компетенции или осведомленности о чем-то, нужно задавать лишь тем, кто может на них ответить. Если есть осно­вания считать, что не все респонденты могут ответить на вопрос из-за отсутствия каких-то знаний или опыта, нужно использовать предварительный вопрос-фильтр, чтобы отсеять тех респондентов, которые могут иметь квалифицированное мнение. Бессмысленно спрашивать о святом причастии у мусульманина или о мажоритарной системе голосования — у человека, которой не интересуется политикой и не участвует в выборах. Задавая специальные вопросы без предварительного «просеивания» рес­пондентов, исследователь рискует принять искусственно созданное мне­ние неосведомленных людей за реальное: люди могут весьма уверенно высказываться не только о малознакомых, но даже и о вымышленных предметах, если будут полагать, что это доставит удовольствие социо­логу.

7. Избегайте любых многозначных или двусмысленных слов и фраз. Ко­нечно, любое слово в некоторых контекстах может выглядеть двусмысленно, так что предыдущая фраза скорее всего выражает благое пожела­ние. И все же нужно пытаться находить замену для каждого слова, которое по-разному понимается в разных субкультурных группах (например, выражения «быть безразличным к чему-то», «относиться к чему-то безразлично» могут восприниматься как абсолютно нейтральные рабочими и как слегка негативные оценки — школьными учителями).

8. Учитывайте возможное влияние фактора социальной желательности. Фактор социальной желательности — одна из основных угроз валидности измерения (см. гл. 6): стремление людей к социальному одобрению, к «престижному» поведению и образу жизни, к самопрезентации может влиять на их ответы на самые разные вопросы: о предпочитаемой марке автомобиля, о сексуальной активности, даже о доходе или образовании. Поскольку фактор социальной желательности начинает определять ответы в той же мере, что и интересующая нас переменная, наше измерение становится невалидным, возникает систематическое смещение, которое в общем случае обозначается как «установка на ответ» (англ. response set). Бороться с этим видом смещения очень сложно. В некоторых случаях «установку на ответ» можно учесть и оценить ее величину на стадии анализа (для этого применяют модели измерения со множественными индикаторами). Иногда для выявления респондентов, склонных давать социально-желательные ответы, используют специальные шкалы (в психомет­рике их называют «шкалами лжи»). Такие шкалы состоят из вопросов, провоцирующих конформистские или установочные ответы. Например, если человек утверждает, что ни разу в жизни не солгал или что он никог­да не чувствует раздражения, когда кто-нибудь указывает на его промахи, можно предположить, что он испытывает весьма сильную потребность в одобрении. К сожалению, специальные методические исследования по­казали, что такого рода шкалы в действительности не очень эффективны для идентификации респондентов, особенно подверженных влиянию фактора социальной желательности[16]

. Идеального решения этой пробле­мы просто не существует. Важно, однако, осознавать возможность таких смещений, избегать «подталкивающих» вопросов и провоцирующих «со­циальное тщеславие» формулировок, а также уделять особое внимание этой проблеме на стадии анализа и интерпретации.

9. В вопросах, касающихся фактического положения дел или поведения людей, следует достаточно конкретно определять временные и простран­ственные координаты интересующих Вас событий. Трудно ответить на вопросы «Пользуетесь ли Вы общественным транспортом, находясь вда­ли от дома?» или «Часто ли Вы читаете детективы?». Нужно конкретизи­ровать понятие «вдали» (другой город, другая страна, другой микрорай­он?) и указать, какой период времени имеется в виду (например, «Как часто в течение последнего года Вы читали...?»).

10. Не стремитесь к излишней детализации вопросов. Во-первых, респон­денту в большинстве случаев легче указать некоторый числовой интервал, чем оценить точное значение признака. Даже такой явно «числовой» при­знак, как доход, может оцениваться по-разному, в зависимости оттого, какие источники или временные рамки принимаются в расчет. К тому же вы, ско­рее всего, не сможете полностью использовать полученные точные оценки — даже если допустить, что они абсолютно надежны, — так как другие пере­менные будут измерены на номинальном или ординальном уровнях.

7. «Сензитивные» вопросы

Эту проблему стоит обсудить отдельно, так как необходимость задать «сензитивные» (иногда — «угрожающие», деликатные) вопросы возникает не так уж редко. «Сензитивными» могут считаться любые вопросы, направленные на по­лучение сведений, которые люди обычно предпочитают утаивать. Ответы на личностные или деликатные вопросы чаще бывают неискренними и соответ­ственно ведут к не связанным с выборкой систематическим ошибкам в данных. Влияние «установки на ответ» на качество таких данных изучалось в целом раде специальных методических исследований[17]. В результате удалось показать, что помимо собственно содержания вопроса на величину смещения влия­ет его форма. Задавая вопросы, относящиеся к «сензитивным» сферам поведе­ния людей, лучше всего избегать прямых формулировок, подобных вопросу: «Случалось ли Вам попадать в вытрезвитель?». Косвенные формулировки обыч­но используют прием проекции нестандартного поведения — на «других людей», «всех людей» — и его рутинизации, т. е. подчеркивания его обыденности. Примерами косвенных формулировок могут служить вопросы: «Известно, что каждый взрослый мужчина хотя бы раз в жизни может «упиться в стельку» и попасть в медвытрезвитель. Случалось ли что-нибудь подобное с Вами?», «Есть ли среди Ваших знакомых люди, задушившие своих жен? (Ответ) А Вам само­му доводилось это делать?».



Pages:     || 2 |
 





<
 
2013 www.disus.ru - «Бесплатная научная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.