WWW.DISUS.RU

БЕСПЛАТНАЯ НАУЧНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 

Pages:     | 1 |   ...   | 2 | 3 || 5 |

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ...»

-- [ Страница 4 ] --
  1. Рассчитать коэффициент вариации (V) показателя длины колоса и количества цветков в колоске в гибридной популяций яровой пшеницы. Какова степень варьирования признаков? (ответ)

Длина колоса, см

5,8 6,2 6,3 6,1 6,1 5,7 6,5 6,0 6,1 5,8
6,3 6,2 6,2 5,4 5,9 6,0 5,7 5,9 5,2 6,1
6,1 6,7 6,2 6,5 6,2 5,7 6,1 5,7 5,9 6,0
5,7 5,9 6,1 5,9 6,0 6,1 5,8 6,0 6,1 6,2
6,0 5,7 6,2 5,9 6,1 6,2 6,3 6,0 5,2 5,8
Количество цветков в колоске, шт.
2,3 2,8 4,3 3,4 3,8 3,2 4,0 4,0 3,6 3,0
3,4 3,2 3,0 3,0 3,4 2,8 2,8 2,5 2,8 2,8
4,0 3,4 3,2 3,8 3,2 2,8 2,4 3,0 2,6 3,0
3,0 3,0 2,3 3,2 2,8 2,6 2,6 3,6 3,1 2,9
2,8 3,2 3,4 3,2 2,6 3,2 3,8 2,8 3,2 3,2
  1. Измерена длина пятидесяти колосьев ячменя потомства гибридных растений. Рассчитать, как варьирует этот признак? (ответ)
8,0 8,5 7,0 8,5 6,5 7,0 8,0 7,5 8,0 7,0
6,5 8,5 7,5 7,5 7,5 6,5 6,5 8,0 9,0 6,5
9,0 7,0 7,0 8,0 8,0 7,5 7,5 7,5 7,0 7,5
7,0 8,0 7,0 7,3 7,5 8,0 8,0 8,0 7,5 7,0
7,5 6,5 7,0 8,0 7,0 7,5 7,0 7,5 7,0 7,5


Тема 10. Сцепленное наследование И КРОССИНГОВЕР

Задания

  1. Ознакомиться со схемой образования гамет при независимом комбинировании генов, при полном сцеплении и при неполном сцеплении.
  2. Проанализировать наследование признаков, сцепленных с полом.
  3. Проанализировать наследование признаков при неполном сцеплении генов в хромосоме.
  4. Решить задачи.

Литература

  1. Гуляев Г.В. Генетика. – 3-е изд., перераб. и доп. – М. : Колос, 1984. – С. 89-113.
  2. Пухальский В.А. Введение в генетику. – М. : КолосС, 2007. – С. 69-95.
  3. Генетика / А.А. Жученко, Ю.Л. Гужов, В.А. Пухальский и др. ; Под ред. А.А. Жученко. – М. : КолосС, 2003. – С. 142-209.
  4. Дубинин Н.П. Общая генетика. – 3-е изд. – М. : Наука, 1986. – С. 118-148.
  5. Аиала Ф., Кайгер Д. Современная генетика : Пер. с англ. – М. : Мир, 1987. – Т. 1. – С. 64-87.
  6. Абрамова З.В. Практикум по генетике. – Л. : Агропромиздат, Ленингр. отд-ние, 1992. – С. 90-92.
  7. Гуляев Г.В. Задачник по генетике. – М.: Колос, 1973. – С. 20-25.
  8. Абрамова З.В. Хромосомная теория наследственности : Учебное пособие по генетике. – Л. : Ленинград-Пушкин, 1975. – Ч. 3. – С. 55-112.

Пояснение к заданиям. В 1906 г. Бэтсон и Пеннет выявили явление сцепленного наследования, но объяснение этому было дано несколько позднее Т. Морганом и его сотрудниками, работавшими с плодовой мушкой дрозофилой. Было установлено, что все гены дрозофилы можно разделить на 4 группы. Гены, принадлежащие к разным группам, наследовались независимо друг от друга, гены же, входящие в одну группу, часто наследовались сцеплено друг с другом. При изучении хромосомного аппарата дрозофилы было установлено, что её соматические клетки содержат четыре пары хромосом (рисунок 27). Отсюда было сделано заключение, что гены расположены в хромосомах и четыре группы сцепления соответствуют гаплоидному числу различных хромосом. Таким образом,

сцепленное наследование признаков обусловлено линейным расположением генов в одной хромосоме и связано с независимым расхождением хромосом при образовании гамет в процессе мейоза.

Вместе с тем Морган доказал, что сцепление очень редко бывает полным. Неполное сцепление является следствием перекомбинации генов (признаков) в результате кроссинговера (перекрёста и обмена участками в гомологичных парах хромосом) при их конъюгации в профазе редукционного деления мейоза (см. рисунки 8-9).

Учитывая линейное расположение генов в хромосомах, было установлено, что частота кроссинговера и величина кроссоверных гамет зависит от расстояния между генами в одной хромосоме. Чем дальше друг от друга расположены гены в одной группе сцепления, тем выше вероятность кроссинговера между ними и тем больше образуется кроссоверных гамет (особей). За единицу измерения расстояния между исследуемыми генами принят один процент кроссинговера, равный 1 % кроссоверных особей, 1 морганиде. Гаметы, зиготы и взрослые особи, возникшие в результате перекреста хромосом, называются кроссоверными, или кроссоверами. Количество кроссоверных особей свидетельствует о величине расстояния между данными генами в хромосоме: чем больше кроссоверных особей, тем дальше один от другого гены расположены в хромосоме. В результате последовательного изучения взаиморасположения генов по величине перекрёста между ними для каждой пары гомологичных хромосом составляют генетические карты хромосом. На такой карте наносят относительное расположение генов, находящихся в одной группе сцепления. В настоящее время генетические карты хромосом составлены для дрозофилы (приложение 7), томатов, кукурузы, ячменя, гороха и др.

Перекомбинация генов гомологичных хромосом, происходящая при кроссинговере, имеет большое эволюционное и селекционное значение, т.к. кроссоверные гаметы, объединяясь при оплодотворении в одну зиготу, дают новую комбинацию генов в генотипе гибрида, качественно отличную от исходных родительских форм (рисунок 28).

С этой целью селекционер проводит скрещивание выделенных им форм, каждая являющаяся носителем определённых хозяйственно ценных признаков и свойств. При скрещивании с определённой долей вероятности происходит комбинация кроссоверных гамет, являющихся носителями ценных признаков, объединяемых в образующейся зиготе. В дальнейшей системе селекционного процесса проводится выявление и отбор этих гибридов, сочетающих ценные признаки обоих родителей в одном организме.

Для наглядности в схемах скрещивания условные обозначения генов записывают с учётом локализации их в хромосомах. Если гены локализованы в разных хромосомах, то их показывают отдельными черточками, а если гены локализованы в одной хромосоме – то одной непрерывной черточкой. Так, если два гена находятся в двух разных парах хромосом, то дигетерозиготные особи записывают следующим образом , а если в одной то .

Различная локализация генов в хромосомах определяет образование разного числа типов гамет. Так, у дигетерозиготы с локализацией генов в разных хромосомах, т.е. при свободном комбинировании, может образоваться с одинаковой частотой вероятности четыре типа гамет, при полном сцеплении – только два родительских типа, а при неполном сцеплении – четыре возможных типа, но доля некроссоверных гамет бывает всегда больше 50 %, а доля кроссоверных – всегда меньше 50 % (рисунок 29).

При свободном комбинировании




(25 %) (25 %) (25 %) (25 %)
При полном сцеплении


50 % 50 %
При неполном сцеплении




> 25 % > 25 % < 25 % < 25 %

Рисунок 29 – Соотношение числа гамет при свободном и сцепленном наследовании генов

При исследовании морфологии хромосом дрозофилы выяснилось, что у самок и самцов они отличаются друг от друга. У самок во всех четырёх парах хромосомы одинаковые, а у самцов в одной из пар хромосомы различные: одна из них прямая, такая же, как у самки, другая – крючковидная. Первую назвали Х-хромосомой, вторую – У-хромосомой (см. рисунок 27). Поэтому самка дрозофилы образует один тип гамет с Х-хромосомой, а самец – два типа гамет: с Х-хромосомой и с У-хромосомой. При оплодотворении, если к женской гамете с Х-хромосомой попадает от самца гамета с Х-хромосомой, то рождается самка, а если с У-хромосомой – самец. Таким образом, был установлен один из хромосомных механизмов определения пола. По такому типу определяется пол у человека (приложение 8), многих животных и растительных организмов.

Все хромосомы в клетках раздельнополых организмов, за исключением половых хромосом, называются аутосомами и обозначаются символом А. Например, хромосомная формула самки дрозофилы: 6А+ХХ; самца – 6А+ХУ.

Подавляющее большинство цветковых растений гермафродитные (обоеполые), но около 5 % из них – двудомные (облепиха, конопля, хмель, спаржа и др.)

Половые хромосомы определяют не только развитие пола, но и другие признаки. Наследование признаков, гены которых локализованы в половых хромосомах, называется наследованием, сцепленным с полом. То, что Ухромосома содержит меньший объём генетической информации по сравнению с Х-хромосомой, приводит к явлению гемизиготности. При этом явлении не только доминантные, но и рецессивные гены Х-хромосомы, не имеющие гомологичного участка в У-хромосоме, могут свободно проявляться, словно находясь в гомозиготном состоянии. Таким образом наследуются ряд признаков, в том числе некоторые наследственные заболевания человека – гемофилия, дальтонизм и др. (приложение 9).

Задачи

  1. Какие типы гамет и в каком процентном отношении образуются у растений, имеющих генотипы: а) ; б) .(ответ)
  2. Какие различия в численном отношении образуемых гамет будут наблюдаться у двух организмов, имеющих такую структуру генотипов: а) ; б) . (ответ)
  3. Расстояние между генами А и В, расположенными в одной группе сцепления, равно 4,6 единицы кроссинговера. Определить, какие типы гамет и в каком процентном отношении образуют особи генотипа .(ответ)
  4. Зелёная окраска проростков ячменя обусловлена наличием доминантных аллелей генов А и В в гомо- или гетерозиготном состоянии. При отсутствии аллеля В появляются желтые проростки, во всех остальных случаях – белые. В потомстве одного из самоопылений было получено 205 зеленых, 103 белых и 98 желтых проростков. Как объяснить подобнее расщепление, учитывая сцепление? (ответ)
  5. У томатов гены, определяющие высоту растений и форму плодов, наследуются сцеплено и локализованы в одной аутосоме. Скрещивали гомозиготное растение с доминантными генами высокорослости (Н) и шаровидной формой плодов (Р) с растениями, имеющими карликовая рост (ген h) и грушевидную форму плодов (р). Было получено 8 растении F1, от самоопыления которых выросло 24 растения F2. (ответ)

а) Сколько высокорослых растения с шаровидными плодами было в F1?





б) Сколько типов гамет может образовать растение F1?

в) Сколько разных генотипов было в F2?

г) Сколько разных фенотипов было в F2?

д) Сколько растений F2 имели карликовый рост и грушевидные плоды?

  1. У пшеницы доминантные признаки – восприимчивость к стеблевой ржавчине (А) и восприимчивость к мучнистой росе (В), рецессивные признаки – устойчивость к стеблевой ржавчине (а) и устойчивость к мучнистой росе (в). Наследование сцепленное. Кроссинговер 2 %. Какие результаты по фенотипу и генотипу ожидаются в потомстве анализирующего скрещивания дигетерозиготы ?(ответ)
  2. От опыления устойчивых к мучнистой росе с опушёнными колосковыми чешуями растений пшеницы пыльцой восприимчивых к мучнистой росе с неопушёнными колосковыми чешуями растений получили гибриды F1, устойчивые к мучнистой росе с опушенными колосковыми чешуями. Определите генотип и фенотип потомства возвратных скрещиваний, если наследование сцепленное и кроссинговер составляет 1 %.(ответ)
  3. У человека гемофилия (несвёртываемость крови) обусловлена наличием рецессивного гена h, локализованного в Х-хромосоме. Женщина, отец которой был болен гемофилией, а в родословной матери это заболевание не встречалось, вышла замуж за здорового мужчину. Определить вероятность рождения от этого брака здоровых детей – мальчиков и девочек. (ответ)
  4. Девушка, имеющая нормальное зрение, отец которой был дальтоник, выходит замуж за мужчину с нормальным зрением. Какое зрение может быть у потомства от этого брака? (ответ)
  5. Известно, что окраска шерсти у кошек контролируется геном, локализованным в половой Х-хромосоме. Чёрная окраска доминирует, а черепаховая – неполнодоминантный признак. Какое потомство по окраске шерсти у кошек следует ожидать при скрещивании рыжего кота с черепаховой кошкой? (ответ)
  6. Женщина со II группой крови (IAIA, либо IAi) и с нормальной её свёртываемостью (здоровая) выходит замуж за здорового мужчину с III группой крови (IВIВ, либо IВi). От этого брака родилось три ребёнка: девочка здоровая со II группой крови, мальчик здоровый с I группой крови (ii), мальчик-гемофилик со II группой крови. Известно, что родители женщины и мужчины были здоровы. Объяснить, от кого один из мальчиков унаследовал гемофилию. Определить генотипы всех членов семьи. (ответ)
  7. У человека дальтонизм обусловлен сцепленным с полом рецессивным геном (d), а альбинизм – с аутосомным рецессивным геном (c). У супружеской пары, нормальной по этим признакам, родился сын с двумя указанными аномалиями. Укажите возможные генотипы родителей. Какова вероятность того, что у данной супружеской пары может родиться здоровая дочь? (ответ)


Тема 11. Молекулярные основы наследственности

Задания

  1. Разобраться в схеме репликации, транскрипции и трансляция генетического материала в клетке.
  2. Разобраться в схеме строения гена.
  3. Выяснить назначение и механизм процессинга у эукариот.
  4. Решить задачи.

Литература

  1. Гуляев Г.В. Генетика. – 3-е изд., перераб. и доп. – М. : Колос, 1984. – С. 125-173.
  2. Айала Ф., Кайгер Дж. Современная генетика : Пер. с англ. – М. : Мир, 1987. – Т. 1. – С. 88-295.

  1. Айала Ф., Кайгер Д. Современная генетика : Пер. с англ. – М. : Мир, 1988. – Т. 2. – 368 с.
  2. Биология / В.Н. Ярыгин, В.И. Васильева, И.Н. Волков, В.В. Синельщикова; Под ред. В.Н. Ярыгина. – 2-е изд., испр. – М. : Высш. шк., 1999. – 448 с.
  3. Инге-Вечтомов С.Г. Генетика с основами селекции. – М. : Высш. шк., 1989. – 521 с.
  4. Гуляев Г. В. Задачник по генетике. – М. : Колос, 1973. – С. 28-29.

Пояснение к заданиям. Материальной основой наследственности большинства живых организмов является дезоксирибонуклеиновая кислота (ДНК), представляющая собой длинную полинуклеотидную структуру (десятки и сотни тысяч пар нуклеотидов), состоящую из двух соединённых друг с другом водородными связями антипараллельных нитей (рисунки 30, 31, 32).

Каждая нить молекулы ДНК состоит из нуклеотидов. Нуклеотид, в свою очередь, состоит из пентозного сахара дезоксирибозы, остатка фосфорной кислоты и одного из четырёх азотистых оснований (пуриновые –

аденин и гуанин, пиримидиновые – цитозин и тимин). Нуклеотиды соединены друг с другом фосфодиэфирными связями между остатком фосфорной кислоты и пентозным сахаром, образуя тем самым сахаро-фосфатный остов нити. Начало цепи всегда несёт фосфатную группу в положении 5, а конец – свободный гидроксил в положении 3, через который происходит наращивание полинуклеотидной цепи.

Цепи молекулы ДНК соединяются друг с другом водородными связями между их азотистыми основаниями по принципу комплементарности. Аденин одной цепи соединяется двумя водородными связями с тимином другой цепи, а между гуанином и цитозином разных цепей образуются три соединяющих их связи.

Другой важной особенностью объединения двух полинуклеотидных цепей в молекуле ДНК является их антипараллельность: 5-конец одной цепи находится рядом с 3-концом другой, и наоборот.

Таким образом, в структурной организации молекулы ДНК выделяют первичную структуру – полинуклеотидная цепь, вторичную структуру – две комплементарные друг другу и антипараллельные полинуклеотидные цепи, соединённые водородными связями, и третичную структуру – несколько форм трёхмерной спирали (А-, В-, С- и Z-форма).

Одним из основных свойств наследственного материала клетки является его способность к самокопированию – репликации. В процессе репликации на каждой полинуклеотидной цепи материнской молекулы ДНК синтезируется комплементарная ей цепь. В итоге из одной двуцепочечной спирали ДНК образуется две идентичные молекулы ДНК. Такой способ удвоения молекул, при котором каждая дочерняя молекула содержит одну исходную материнскую и одну вновь синтезированную цепь, называют полуконсервативным.

Репликация у эукариот начинается в определённых точках (локус ori) с образования особой структуры – репликационного глаза, где две цепи родительской ДНК ферментом геликазой (хеликазой) отделяются друг от друга, чтобы стать матрицами синтеза комплементарных цепей дочерних молекул. Область расхождения полинуклеотидных цепей в зонах репликации называют репликационными вилками. Фрагмент ДНК от одной точки репликации до другой точки образует единицу репликации – репликон. В процессе синтеза две репликационные вилки, образующие репликационный глаз, перемещают

ся в противоположных направлениях до встречи с репликационной вилкой соседнего репликона. В разных репликонах молекулы ДНК эукариот удвоение может идти в разное время или одновременно.

Разделённые геликазой нити материнской ДНК связываются с белком SSB, предотвращая преждевременную реассоциацию цепей и их разрушение.

Синтез новых (комплементарных) цепей молекулы ДНК осуществляет фермент ДНК-полимераза. Особенностью ДНК-полимеразы является её неспособность начать синтез новой полинуклеотидной цепи путём простого связывания двух нуклеозидтрифосфатов: необходим 3-ОН-конец полинуклеотидной цепи, спаренной с матричной цепью ДНК. Такую полинуклеотидную цепь называют затравкой или праймером. Роль затравки выполняют синтезированные праймазой (РНК-полимераза) короткие последовательности РНК (около 10 нуклеотидов). ДНК-полимераза на основе матричной цепи молекулы ДНК и 3-ОН-конца затравки присоединяет очередной нуклеотид, постепенно удлиняя цепь (рисунок 33).

Разделение спирально закрученных цепей родительской ДНК ферментом геликазой вызывает появление супервитков перед репликационной вилкой. Фермент топоизомераза, работая перед репликационной вилкой, разрывает одну из цепей молекулы ДНК, давая ей возможность вращаться вокруг второй цепи и снимая накопившееся напряжение в двойной спирали ДНК (рисунок 34).

К высвобождающимся после работы геликазы водородным связям нуклеотидных последовательностей разделённых родительских цепей присоединяются нуклеотидные последовательности в виде дезоксирибонуклеозидтрифосфатов. Определённый нуклеозид образует водородные связи с соответствующим нуклеотидом материнской цепи ДНК. Затем при участии фермента ДНК-полимеразы он связывается фосфодиэфирной связью с предшествующим нуклеотидом вновь синтезируемой цепи, отдавая при этом неорганический пирофосфат (рисунок 35).

Способность ДНК-полимеразы осуществлять сборку полинуклеотидов в направлении 5- к 3-концу при антипараллельном соединении двух цепей ДНК означает, что процесс репликации должен протекать на них по-разному. Так, если на лидирующей дочерней цепи ДНК, которая синтезируется по матрице, имеющей направление 3 5, её рост идет непрерывно от 5- к 3-концу, то другая отстающая дочерняя цепь не может формироваться по ходу репликационной вилки. Поэтому её синтез осуществляется в направлении, обратному ходу репликационной вилки, отрезками протяжённостью (у эукариот) 100-200 нуклеотидов, называемыми фрагментами Оказаки. Синтезу каждого такого фрагмента предшествует образование затравки (см. рисунок 33). Два сформированные фрагмента Оказаки после удаления из них затравки (осуществляется ферментом ДНК-полимераза I) сшиваются ферментом ДНК-лигаза с образованием фосфодиэфирной связи, формируя тем самым отстающую нить (рисунок 36).

Общая схема работы ферментов в репликационной вилке показана на рисунке 37.

Известно, что хромосомы эукариотических клеток состоят в основном из ДНК и белков, образуя нуклеопротеиновый комплекс. На долю белков (гистоновые и негистоновые) приходится около 60 % массы всей хромосомы. Гистоны представлены пятью белковыми фракциями: Н1, Н2А, Н2В, Н3, Н4. Являясь положительно заряженными основными белками, они достаточно прочно соединяются с молекулами ДНК, препятствуя считыванию заключённой в ней информации. В этом состоит их регуляторная роль. Кроме того, эти белки обеспечивают пространственную организацию ДНК в хромосомах.

В процессе подготовки клетки к делению интерфазное состояние ядра на­чинает меняться, приводя к образованию строго специфичного для вида ка­риотипа хромосом (количество, форма, размер). Основную роль в этом процессе выполняют гистоны.

Первый уровень организации хроматина – нуклеосомная нить обеспечивается четырьмя видами гистонов Н2А, Н2В, Н3, Н4 (рисунок 38). Они образуют округлую белковую структуру, состоящую из восьми молекул (по две молекулы каждого вида гистонов), на которую спирально накручивается молекула ДНК, состоящая из 146 пар нуклеотидов (п.н.). Свободные от контакта с белковыми телами участки ДНК, включающие от 15 до 100 п.н. (в среднем 60 п.н.), называются связующими или линкерными. Спирально накрученная на гистоновую структуру молекула ДНК вместе с линкерной последовательностью составляет длину около 200 п.н. и называется нуклеосомой.

Молекула ДНК, упакованная в виде нуклеосомной нити, напоминает цепочку бус. Её диаметр с 2 нм приобретает 10-11 нм, а длина уменьшается с 5 до 0,7 см.

Дальнейшая компактизация нуклеосомной нити обеспечивается гистоном Н1, который, соединяясь с линкерной ДНК и двумя соседними белковыми телами, сближает их друг с другом. В результате образуется элементарная хроматиновая фибрилла, имеющая диаметр 20-30 нм и длину 1,2 мм.

Следующий уровень структурной организации генетического материала обусловлен укладкой хроматиновой фибриллы в петли (рисунок 39). В результате такой упаковки хроматиновая фибрилла диаметром 20-30 нм преобразуется в структуру диаметром 100-200 нм, называемую интерфазной хромонемой.

Отдельные участки интерфазной хромонемы подвергаются дальнейшей компактизации, образуя структурные блоки, объединяемые в дальнейшем в метафазные хромосомы.

Молекула ДНК имеет значительную протяжённость. Ген – это участок молекулы ДНК протяжённостью около 1000 нуклеотидов. Ген включает в себя не только структурную часть, но и регуляторные последовательности. В 1961 г. Жакоб и Моно выдвинули предположение, что транскрипция генов находится под контролем регуляторного участка, названного оператором (О). Регуляция транскрипции на операторном участке осуществляется репрессором, вырабатываемым геном-индуктором (I). Репрессор, связываясь с оператором, подавляет транскрипцию. Если же репрессор связывается с индуктором, то происходит диссоциация комплекса репрессор-оператор и тем самым делая возможным транскрипцию (рисунок 40).

Синтез м-РНК (и-РНК) начинается с обнаружения РНК-полимеразой особого участка на молекуле ДНК (промотор), который указывает место начала транскрипции. После присоединения к промотору РНК-полимераза раскручивает виток спирали ДНК и две её цепи расходятся. Сборка рибонуклеотидов в цепь происходит с соблюдением их комплементарности нуклеотидам ДНК, а также антипараллельно по отношению к матричной цепи ДНК. В связи с тем, что РНК-полимераза способна собирать полинуклеотид лишь от 5- к 3-концу, матрицей для транскрипции может служить только та цепь, которая обращена к ферменту 3-концом (эту цепь называют кодогенной).

РНК-полимераза, продвигаясь вдоль кодогенной цепи ДНК, осуществляет понуклеотидное переписывание информации до тех пор, пока не встретит специфическую нуклеотидную последовательность – терминатор. В этом участке РНК-полимераза отделяется как от матрицы ДНК, так и от вновь синтезированной м-РНК. По мере продвижения РНК-полимеразы пройденные ею одноцепочечные участки ДНК вновь объединяются в двойную спираль.

В отличие от прокариотических генов большинство генов эукариот прерывисты, т.к. в своём составе несут не только смысловые экзоны, но и неинформативные нуклеотидные последовательности – интроны. В связи с этим первичные транскрипты образуют так называемую гетерогенную ядерную РНК (гя-РНК), которая ещё находясь в ядре, подвергается процессингу и только после этого превращается в зрелые м-РНК (рисунок 41).

Процессинг (созревание) гя-РНК предполагает модифицирование первичного транскрипта и удаление из него некодирующих интронных участков с последующим соединением (сплайсинг) кодирующих последовательностей – экзонов. Кроме сплайсинга во время процессинга происходит также модифицирование первичного транскрипта с 5-конца путём образования колпачка – кэп, который обеспечивают узнавание молекул м-РНК рибосомами цитоплазмы (рисунок 42).

Кроме того, происходит удаление части нуклеотидов на 3-конце первичного транскрипта и присоединение к нему последовательности, состоящей из 100-200 остатков адениловой кислоты (поли-А). Считается, что эта последовательность способствует энергетическому обеспечению дальнейшего процессинга и транспорта зрелой м-РНК из ядра в цитоплазму.

Наряду с кэпированием и полиаденилованием первичного транскрипта происходит удаление неинформативных для данного белка интронных участков, размер которых варьирует от 100 до 10000 нуклеотидов и более. На долю интронов приходится около 80 % всей гя-РНК. Удаление интронов с последующим соединением экзонов осуществляется специальными структурами – малыми ядерными РНК (мя-РНК).

В настоящее время доказана возможность альтернативного сплайсинга, при котором на одном первичном транскрипте могут удаляться разные нуклеотидные последовательности и образовываться различные зрелые м-РНК.

Наследственная информация, записанная с помощью генетического кода, хранится в молекулах ДНК и непосредственного участия в жизнеобеспечении клеток не принимает. Роль посредника в переводе наследственной информации, хранимой в ДНК, в рабочую форму играют рибонуклеиновые кислоты – РНК.

Молекулы РНК состоят из четырёх типов нуклеотидов, содержащих сахар рибозу, фосфат и одно из четырёх азотистых оснований – аденин, гуанин, цитозин, урацил. Всё многообразие РНК, действующих в клетке, можно разделить на три основных вида: м-РНК, т-РНК, р-РНК.

Матричная РНК (м-РНК) синтезируется РНК-полимеразой на ДНК как копия соответствующего гена. Этот процесс называется транскрипцией. Тройки рядом стоящих нуклеотидов м-РНК, шифрующие определённые аминокислоты, называются кодонами (триплеты). Таким образом, последовательность кодонов м-РНК шифрует последовательность аминокислот в пептидной цепи (рисунок 43, таблица 10).

Генетический код характеризуется следующими основными свойствами:

  • универсальность для живых организмов,
  • триплетность (состоит из трёх нуклеотидов),
  • неперекрываемость (азотистые основания одного триплета не входят в состав других соседних триплетов),
  • вырожденность (одна аминокислота может кодироваться несколькими триплетами).

В генноинженерных работах имеется необходимость по аминокислотной последовательности белка определить нуклеотидную последовательность иРНК. Для решения задач на эту тему удобно пользоваться генетическим кодом, представленным в виде таблицы 10.

Таблица 10 – Последовательность нуклеотидов в кодонах и-РНК для разных аминокислот

Аминокислоты Кодоны
1 2 3 4 5 6
Фенилаланин (фен) УУУ УУЦ



Лейцин (лей) УУА УУГ ЦУУ ЦУЦ ЦУА ЦУГ
Изолейцин (илей) АУУ АУЦ АУА


Метионин (мет) АУГ




Валин (вал) ГУУ ГУЦ ГУА ГУГ

Серин (сер) УЦУ УЦЦ УЦА УЦГ АГУ АГЦ
Пролин (про) ЦЦУ ЦЦЦ ЦЦА ЦЦГ

Треонин (тре) АЦУ АЦЦ АЦА АЦГ

Аланин (ала) ГЦУ ГЦЦ ГЦА ГЦГ

Тирозин (тир) УАУ УАЦ



Гистидин (гис) ЦАУ ЦАЦ



Глутамин (глн) ЦАА ЦАГ



Аспарагин (асн) ААУ ААЦ



Аспарагиновая кислота (асп) ГАУ ГАЦ



Лизин (лиз) ААА ААГ



Глутаминовая кислота (глу) ГАА ГАГ



Цистеин (цис) УГУ УГЦ



Триптофан (трип) УГГ




Аргинин (арг) ЦГУ ЦГЦ ЦГА ЦГГ АГА АГГ
Глицин (гли) ГГУ ГГЦ ГГА ГГГ

Охра* УАА




Амбер* УАГ




Опал* УГА




* Примечание: охра, амбер, опал – условные названия терминирующих триплетов (нонсенс-кодоны)

.

Важная роль в процессе реализации наследственной информации клетки принадлежит транспортной РНК (т-РНК), которая доставляет соответствующие аминокислоты к месту сборки пептидных цепей.

Молекулы т-РНК представляют собой относительно небольшие нуклеотидные последовательности (75-95 нуклеотидов) и комплементарно соединённые в определённых участках. В результате формируется структура, напоминающая по форме лист клевера, в которой выделяют две наиболее важные зоны – акцепторная часть и антикодон.

Акцепторная часть т-РНК состоит из комплементарно соединённых 7 пар оснований и несколько более длинного одиночного участка, заканчивающегося 3-концом, к которому присоединяется транспортируемая соответствующая аминокислота (рисунок 44).

Другой важный участок тРНК – антикодон, состоящий из трёх нуклеотидов. Этим антико­доном т-РНК по принципу комплементарности определяет себе место на иРНК, определяя тем самым очерёдность присоединения транспортируемой им аминокислоты в полипептидную цепочку.

Наряду с функцией точного узнавания определённого кодона в м-РНК молекула т-РНК связывается и доставляет к месту синтеза белка определённую аминокислоту, присоединённую ферментом аминоацил-т-РНК-синтетазы. Этот фермент обладает способностью к пространственному узнаванию, с одной сто­роны, антикодона т-РНК и, с другой, – соответствующей аминокислоты. Для транспортировки 20 типов аминокислот используются свои транспортные РНК.

Процесс взаимодействия мРНК и т-РНК, обеспечивающий трансляцию информации с языка нуклеотидов на язык аминокислот, осуществляется на рибосомах.

Рибосомы представляют собой сложные комплексы рибосомной РНК (рРНК) и разнообразных белков. Рибосомная РНК является не только структурным компонентом рибосом, но и обеспечивает связывание её с определённой нуклеотидной последовательностью м-РНК, устанавливая начало и рамку считывания при образовании пептидной цепи. Кроме того, они обеспечивают взаимодействие рибосомы с т-РНК (рисунок 45).

В рибосомах имеются две зоны. Одна из них удерживает растущую полипептидную цепь, другая – м-РНК. Кроме того, в рибосомах выделяют два участка, связывающих т-РНК. В аминоацильном участке размещается аминоацил-т-РНК, несущая определённую аминокислоту. В пептидильном находится т-РНК, которая освобождается от своей аминокислоты и покидает рибосому при её перемещении на один кодон м-РНК.

В ходе трансляции выделяют три фазы: инициацию, элонгацию и терминацию синтеза пептидной цепи.

Фаза инициации заключается в объединении двух находящихся до этого порознь в цитоплазме субъединиц рибосомы на определённом участке м-РНК и присоединение к ней первой аминоацил-т-РНК. Этим также задаётся рамка считывания информации, заключённой в м-РНК.

Фаза элонгации (или удлинения пептида) включает в себя все реакции от момента образования первой пептидной связи до присоединения последней аминокислоты. Она представляет собой циклически повторяющееся специфическое узнавание аминоацил-т-РНК очередного кодона, находящегося в Аучастке, комплементарное взаимодействие между кодоном и антикодоном.

В А-участке т-РНК располагается таким образом, что её аминокислота находится рядом с аминокислотой Р-участка. С помощью специальных белков между двумя аминокислотами образуется пептидная связь, освобождая т-РНК, находящуюся в Р-участке. В этот момент рибосома передвигается по м-РНК на один шаг (триплет). Так продолжается до тех пор, пока в А-участок рибосомы не поступит кодон-терминатор. Скорость синтеза аминокислот в эукариотических клетках составляет 2 аминокислоты в 1 с.

Фаза терминации (завершения синтеза пептида) связана с узнаванием терминирующих кодонов. В результате завершённая пептидная цепь теряет связь с рибосомой, которая распадается на две субъединицы.

Пример решения задач

Приведите графическую модель гена, если белковая молекула имеет следующий состав и последовательность аминокислот: глицин – лизин – пролин – серин.

Белок синтезируется по матрице, роль которой выполняет и-РНК, образуемая в процессе транскрипции с определённого участка ДНК (гена). Запишем возможную последовательность нуклеотидов соответствующего участка и-РНК в соответствии с генетическим кодом, приведённым в таблице 13.

Белок глицин лизин пролин серин
Возможные триплеты и-РНК ГГУ ААА ЦЦУ УЦУ
ГГЦ ААГ ЦЦЦ УЦЦ
ГГА ЦЦА УЦА
ГГГ ЦЦГ УЦГ
АГУ
АГЦ
Возможное количество триплетов 4 2 4 6

Приведенные данные свидетельствуют, что участок белка с указанной последовательностью аминокислот мог образоваться в процессе трансляции у 192 вариантов и-РНК (4 2 4 6 = 192), равно как и такого же разнообразия генов. Следовательно, графически можно изобразить 192 варианта гена, содержащих информацию о данной молекуле белка.

Возьмём один из возможных вариантов триплетов и-РНК и по нему построим последовательность нуклеотидов исходной нити ДНК (гена) и комплементарной ему нити.

ДНК (ген) ГГТ ААА ЦЦТ ТЦТ
ЦЦА ТТТ ГГА АГА
и-РНК ГГУ ААА ЦЦУ УЦУ
Белок глицин лизин пролин серин

В ряде случаев бывает необходимо определить последовательность аминокислот синтезируемого белка по кодонам и-РНК. Для этого удобно пользоваться рисунком 41.

Первая буква кодона расположена в центральном круге, вторая – в первом кольце и третья – во втором. В наружном кольце записаны сокращенные названия аминокислот.

Задачи

1. В одной из цепочек молекулы ДНК нуклеотиды расположены в такой последовательности: ТАГАГТЦЦЦГАЦАЦГ. Какова последовательность нуклеотидов в другой цепочке этой же молекулы? (ответ)

2. Белковая цепочка состоит из следующих аминокислот: валин – лейцин– гистидин – серин – изолейцин. Какова последовательность нуклеотидов в составе гена, кодирующего данный белок? (ответ)

3. В состав белка входят 400 аминокислот. Определить какую длину имеет контролирующий его ген, если расстояние между двумя нуклеотидами в молекуле ДНК составляет 0,34 нм? (ответ)

4. Определите порядок чередования аминокислот в молекуле белка, если известно, что он контролируется такой последовательностью азотистых оснований ДНК: ЦЦТАГТТТТААЦ.... Какой станет последовательность аминокислот при удалении из гена четвертого азотистого основания? (ответ)

5. Участок молекулы ДНК имеет следующую последовательность нуклеотидов: АГТАГЦЦЦТТЦЦ.... Напишите схему транскрипции и трансляции. Как она изменится при инверсии участка хромосомы между 4 и 8 нуклеотидом? (ответ)

6. Химическое обследование показало, что 30 % общего числа нуклеотидов информационной РНК приходится на урацил, 26 % на цитозин и 24 % на аденин. Что можно сказать о нуклеотидном составе соответствующего участка двухцепочечной ДНК? (ответ)

Тема 12. Цитоплазматическая наследственность

Задания

  1. Выявить структуры клетки, имеющие ДНК.
  2. Уяснить особенности механизма передачи потомству цитоплазматических наследственных факторов.
  3. Особенности строения женской и мужской половых клеток растений.
  4. Выясните возможности цитоплазматической мужской стерильности (ЦМС) в получении гетерозисных гибридов.
  5. Решение задач.

Литература

  1. Гуляев Г.В. Генетика. – 3-е изд., перераб. и доп. – М. : Колос, 1984. – С. 114-124.
  2. Абрамова З.В. Практикум по генетике. – 4-е изд., перераб. и доп. – Л. : Агропромиздат, Ленингр. отд-ние, 1992. – С. 109-113.
  3. Гуляев Г.В. Задачник по генетике. – М. : Колос, 1973. – С. 27-28.

Пояснение к заданиям. Известно, что некоторое количество наследственного материала клетки находится в виде кольцевых молекул ДНК митохондрий и пластид, а также некоторых других внеядерных генетических элементов. Цитоплазматические гены не подчиняются менделевским закономерностям наследования, которые определяются поведением хромосом при митозе, мейозе и оплодотворении. В связи с тем, что организм, образуемый вследствие оплодотворения, получает цитоплазматические структуры главным образом с яйцеклеткой, цитоплазматическое наследование признаков осуществляется по материнской линии. Такой тип наследования впервые был описан в 1908 г. К. Корренсом.

Одним из ярких примеров цитоплазматической наследственности является цитоплазматическая мужская стерильность (ЦМС), обнаруженная у многих растений (кукурузы, лука, свёклы, льна и др.) и используемая в получении гетерозисных гибридов (рисунок 46).

Цитоплазматическая мужская стерильность была открыта у кукурузы в 30-х годах одновременно в СССР М.И. Хаджиновым и в США М. Родсом. Установлено, что цитоплазма, обусловливающая стерильность пыльцы (CytS) может проявить своё действие только при сочетании с рецессивными ядерными генами (rf) в гомозиготном состоянии (rfrf). Если же этот ядерный ген представлен доминантной аллелью Rf, либо цитоплазма обеспечивает формирование фертильной пыльцы (CytN), то растения Cyts RfRf или Cyts Rfrf, CytN rfrf и др. имеют нормальную пыльцу. При этом ген Rf не изменит структуру и специфичность цитоплазмы CytS, а лишь затормозит проявление её действия. Поэтому считают, что фертильная отцовская форма CytN rfrf является «закрепителем» стерильности, а фертильная форма CytN RfRf – «восстановитель»

фертильности.

У кукурузы известно несколько типов ЦМС, например, техасский (Т), при котором полностью стерильные пыльники не выступают наружу, и молдавский тип, или USDA (S), при котором часть или все пыльники выступают наружу.

Задачи

У кукурузы фертильная пыльца образуется на основе нормальной цитоплазмы (CytN), а наследственная стерильность пыльцы обусловлена наличием стерильной цитоплазмы (CytS). Доминантный ген (Rf) восстанавливает фертильность, и стерильная цитоплазма проявляет свое действие только в сочетании с рецессивными аллелями этого гена (rfrf).

1. Определите соотношение фертильных и стерильных растений в следующих скрещиваниях: а) CytSrfrf CytSRfRf; б) CytSrfrf CytNRfrf; в) CytSRfrf CytNRfrf; г) CytS rfrf CytNrfrf. (ответ)

  1. При скрещивании растений со стерильной пыльцой с растением, у которого нормальная пыльца, получено потомство, состоящее на из фертильных и на из стерильных растений. Определить генотипическую систему отцовского родителя. (ответ)

3. У пшеницы развитие признака стерильности цитоплазмы находится под контролем двух пар генов. Взаимодействие двух доминантных генов Rf1 и Rf2 восстанавливает фертильность и CytS проявиться не может. Растения с одним доминантным геном (Rf1 или Rf2) в гетерозиготном или гомозиготном состоянии – полустерильны. Определить характер расщепления по фертильности-стерильности при самоопылении указанных ниже растений: а)CytSRf1rf1rf2rf2; б)CytSRf1Rf1rf2rf2; в)CytSRf1rf1Rf2rf2; г)CytSRf1Rf1Rf2rf2. (ответ)

Тема 13. Генетическая структура популяции

Задания

  1. Уяснить понятие популяции.
  2. Запомнить формулы для определения частот доминантного и рецессивного генов одной аллельной пары, уравнение Харди-Вайнберга.
  3. Решение задач по вычислению генной, генотипической и фенотипической структуры популяции.

Литература

  1. Гуляев Г.В. Генетика. – 3-е изд., перераб. и доп. – М. : Колос, 1984. – С. 311-327.
  2. Гуляев Г.В. Задачник по генетике. – М. : Колос, 1973. – С. 31-33.
  3. Абрамова З.В. Практикум по генетике. – 4-е изд., перераб. и доп. – Л. : Агропромиздат, Ленингр. отд-ние, 1992. – С. 164-167.
  4. Щеглов Н.И. Сборник задач и упражнений по генетике (с решениями). – Краснодар : МП «Экоивест», 1991. – 34 с.

Пояснение к заданиям. Популяция – это совокупность особей одного вида, заселяющих определённую территорию, свободно скрещивающихся друг с другом и в той или иной степени изолированных от других совокупностей. У перекрёстноопыляющихся растений популяция формируется путём свободного скрещивания особей с разным генотипом. Наследственная структура следующего поколения воспроизводится на основе разнообразных сочетаний гамет при оплодотворении. Поэтому численность особей того или иного генотипа в каждом поколении будет определяться частотой встречаемости разных гамет, произведённых генотипически различными родительскими особями.

Математическую зависимость между частотами аллелей и генотипов в популяции установили два учёных, в честь которых она и была названа законом Харди-Вайнберга. Из этого закона следует, что состав популяции в отношении исходного соотношения аллелей остаётся постоянным от одного поколения к другому. Поэтому, если обозначить частоту доминантного аллеля А, равную p, а частоту рецессивного аллеля а, равную q, то pА + qа = 1. Это уравнение позволяет определить генную структуру популяции. Зная частоту одного из генов, можно вычислить частоту другого гена и частоты всех генотипов и фенотипов.

Генотипическую и фенотипическую структуру популяции определяют по уравнению Харди-Вайнберга – p2AA + 2pqAa + q2aa (рисунок 47).

Несмотря на то, что закономерности, установленные Харди-Вайнбергом, правильны только для идеальной популяции, этот закон очень важен и для анализа динамики генетических преобразований естественных популяций и для изучения эволюционных процессов.

Из закона Харди-Вайнберга вытекает следующее:

а) число гомозиготных доминантных особей равно квадрату частоты доминантного гена (p2);

б) число гомозиготных рецессивных особей равно квадрату частоты рецессивного гена (q2);

в) число гетерозиготных особей равно удвоенному произведению частот обоих аллелей (2рq).

Процессы формирования популяции и её динамика составляет микроэволюцию. Движущими эволюционными факторами, которые определяют изменение генетического состава популяции из поколения в поколение, являются следующие:

1) мутации,

2) естественный отбор,

3) дрейф генов,

4) миграция.

Мутации привносят в популяцию новый генотип, который будет вовлечён в систему скрещиваний и полученное потомство подвергнуто отбору. Если мутационное изменение имеет преимущество над другими признаками, то эта форма получит распространение в данной популяции, а если мутантная форма уступает ранее существовавшим (а такое случается чаще), то она будет сразу или постепенно элиминирована (устранена).

В зависимости от складывающихся особенностей изменения генотипов в популяции действие отбора можно охарактеризовать тремя типами. Стабилизирующий отбор элиминирует крайние (пограничные) формы фенотипов. Дизруптивный отбор проявляется при меньшей приспособленности центральной группы растений вариационного ряда распределения. В результате образуются две или большее количество групп растений (новых популяций). Движущий отбор связан, как правило, с изменившимися условиями произрастания и реакцией популяции на преимущественное развитие определённых групп вариационного ряда, элиминацией противоположных групп и своеобразным «смещением» центра вариационного ряда (рисунок 48).

Дрейф генов можно представить при изоляции группы организмов на каком-нибудь небольшом острове или при уничтожении большинства особей на какой-либо территории в результате стихийного бедствия (пожар, эпифитотии вредных микроорганизмов, массовое распространение вредителей и др.). Дальнейшее размножение организмов и эволюция популяции пойдёт на основе случайно оставшегося количества некоторых представителей бывшей сбалансированной популяции по различным группам растений.

Миграции. В любую популяцию путём скрещивания могут включиться, мигрировать генотипы из другой пограничной популяции. Это приведёт к изменению частоты имевшихся аллелей и к сглаживанию границ между популяциями. В популяцию могут также мигрировать из другой новые, ранее отсутствовавшие в ней гены. Это ещё в большей степени усиливает генетическое разнообразие популяции. Наследственная структура каждого следующего поколения воспроизводится на основе разнообразных сочетаний гамет при оплодотворении. Поэтому численность особей того или иного генотипа в каждом поколении будет определяться частотой встречаемости разных гамет, произведённых генотипически различными родительскими особями.

Пример решения задач

В популяции изучено 1000 растений. Из них 640 имели красную окраску цветков, 40 – розовую, а остальные – белую. Рассчитайте генную, генотипическую и фенотипическую структуру популяции.

Анализ показывает, что фенотипическая структура популяции состоит из 64 % растений, имеющих красную окраску цветков, 32 % – розовую и 4 % – белую окраску. Известно, что, согласно закону Харди-Вайнберга, частота генотипов в популяции (генотипическая структура) выражается следующим уравнением:

p2 AA + 2pq Aa + q2 aa = 1,

где p – частота доминантного гена (А),

q – частота рецессивного гена (а).

Сумма частот аллельных генов равна единице (p + q = 1). По условию задачи можно предположить, что растения, имеющие белую окраску цветков, являются рецессивной гомозиготой и их частота в популяции равна 4 % (q2 = 4 %, или в долях единицы 0,04). Определим в данной популяции частоту встречаемости рецессивного гена – q. Если q2 = 0,04, то q = = = 0,2, или 20 %. Далее можно определить частоту доминантного гена – p. Если p + q = 1, то в нашем случае p = 1 – 0,2 = 0,8, или 80 %. Зная в популяции частоту рецессивного (q = 0,2) и доминантного (p = 0,8) генов, можно определить генотипическую структуру популяции. Если p = 0,8, то p2 = 0,8 0,8 = 0,64. Это и есть частота доминантной гомозиготы (АА) – 0,64, или 64 %. Частота рецессивной гомозиготы (aa) равна q2, т.е. q2 = 0,2 0,2 = 0,04, или 4 %. Частота гетерозигот (Аа) равна 2pq, т.е. 2pq = 2 0,8 0,2 = 0,32, или 32 %.

Таким образом, в популяции определена следующая структура:

Генная Генотипическая
А – 80 %
АА – 64 %
а – 20 % Аа – 32 %
аа – 4 %
Фенотипическая
Растения, имеющие красную окраску цветков 64 %
Растения, имеющие розовую окраску цветков 32 %
Растения, имеющие белую окраску цветков 4 %

Задачи

  1. У подсолнечника наличие панцирного слоя в семянке доминирует над беспанцирностью. При апробации установлено, что беспанцирные семена составляют 9 %. Вычислите частоты доминантного и рецессивного генов в популяции и определите её генотипическую структуру. (ответ)
  2. Проводя апробацию табака, установили частоту доминантного гена устойчивости к чёрной корневой гнили (p=0.98). Определите фенотипическую и генотипическую структуру популяции табака. (ответ)
  3. У дикорастущей земляники красная окраска ягод доминирует над розовой и наследуется моногенно. Определите частоты встречаемости генов «окраски» и генотипическую структуру, если в популяции 84 % растений имеют красную окраску ягод. (ответ)
  4. У капусты устойчивость к фузариозной желтухе доминирует над восприимчивостью к ней. Установлено, что устойчивые растения составляют 91 %. Определите частоты встречаемости генов «устойчивости» и «восприимчивости» в популяции и её генотипическую структуру. (ответ)
  5. У гречихи красная окраска растений неполно доминирует над зелёной. У гетерозиготных растений окраска розовая. В популяции зелёные растения составляют 4 %. Определите частоты генов «окраски», фенотипическую и генотипическую структуру популяции. (ответ)
  6. У сорта кукурузы альбиносные растения (rr) встречаются с частотой 0,0025. Вычислить частоту аллелей R и r и частоту генотипов RR и Rr у этого сорта. (ответ)

ОТВЕТЫ К ЗАДАЧАМ

4.Микроспорогенез и макроспорогенез. Образование гамет

  1. F1 = 16, F2 = 32, F3 = 64, F4 = 128, F5 = 256.
  2. Количество хромосом в клетках:
  • археспориальная – 42,
  • микроспора – 21,
  • макроспора – 21,
  • генеративная клетка – 21,
  • спермий – 21,
  • яйцеклетка – 21,
  • вторичное ядро – 42,
  • зародыша – 42,
  • эндосперма – 63.
  1. Количество хромосом (клеток):
  • микроспора – 7,
  • вегетативная и генеративная клетка – 7,
  • спермиев – 64.
  1. Количество хромосом (клеток):
  • макроспора – 28,
  • яйцеклеток – 1,
  • материнская клетка – 56,
  • яйцеклетка – 28,
  • клетки эндосперма – 84,
  • клетки зародыша – 56.

5.Явление несовместимости аллелей

Гаметофитная несовместимость

1) а) да, произойдёт; F: S1S3; S2S3; S1S4; S2S4;

б) да, произойдёт; F: S1S3; S1S4;

в) да, произойдёт; F: S1S3; S2S3; S1S4; S2S4;

г) да, произойдёт; F: S1S4; S3S4;

д) да, произойдёт; F: S1S3; S3S4;

е) да, произойдёт; F: S2S4; S3S4;

ж) да, произойдёт; F: S2S3; S3S4;

и) да, произойдёт; F: S3S4;

к) не произойдёт;

л) да, произойдёт; F: S3S4;

2) а) оплодотворение произойдёт, F: S1S2; S2S3;

б) оплодотворение не произойдёт;

в) оплодотворение произойдёт, F: S1S3; S2S3;

г) оплодотворение произойдёт, F: S1S2; S1S3;

д) оплодотворение не произойдёт;

Спорофитная несовместимость

  1. а) оплодотворение не произойдёт;

б) оплодотворение не произойдёт;

в) оплодотворение произойдёт, F: S2S2; S2S3;

г) оплодотворение не произойдёт;

д) оплодотворение произойдёт, F: S3S3; S3S4;

е) оплодотворение произойдёт, F: S3S3;

ж) оплодотворение не произойдёт;

  1. а) оплодотворение произойдёт, F: S3S3; S3S4; при реципрокном скрещивании: оплодотворение произойдёт, F: S3S3; S3S4;

б) оплодотворение произойдёт, F: S1S3; при реципрокном скрещивании: оплодотворение не произойдёт;

в) оплодотворение не произойдёт; при реципрокном скрещивании: оплодотворение произойдёт, F: S1S3; S1S4; S2S3; S2S4;

г) оплодотворение не произойдёт; при реципрокном скрещивании: оплодотворение произойдёт, F: S1S2; S1S4;

Гетероморфная несовместимость

  1. Возможность оплодотворения:
    • нет,
    • нет,
    • да,
    • да.

6.Независимое наследование генов

6.1.Моногибридное скрещивание

  1. а) А; б) А, а; в) а.
  2. Вероятно наследование признака, обусловленного одной парой генов при полном доминировании. Генотип родителей Аа.
  3. а) 8; б) 1; в) 40; г) 80; д) 40.
  4. а) 1; б) 2; в) 24; г) 48; д) 24.
  5. а) 2; б) 1; в) 10; г) 186; д) 124.
  6. а) 2; б) 20; в) 40; г) 20; д) 20.
  7. а) 2; б) 20; в) 18; г) 36; д) 1.
  8. а) 1; б) 48; в) 48; г) 144; д) 3.
  9. а) 1; б) 1; в) 2; г) 3; д) 22.
  10. а) 2; б) 20; в) 120; г) 240; д) 360.
  11. а) 1; б) 12; в) 12; г) 22; д) 3.
  12. а) 2; б) 25; в) 25; г) 12; д) 24.

6.1.1.Возвратное (анализирующее, насыщающее) скрещивание

  1. Генотипы родителей: Аа, аа.
  2. Генотипы родителей: АА, аа.
  3. а) 2; б) 1; в) 30; г) 2; д) 30.
  4. В первом случае: Аа (карликовое) Аа (карликовое). Во втором случае: Аа (карликовое) аа (высокорослое).
  5. а) 2; б) 2; в) 2; г) 2; д) 1.
K- кареглазая kk голубоглазый Kk кареглазая Kk кареглазый
Kk кареглазая

kk голубоглазый


Kk кареглазый



Pages:     | 1 |   ...   | 2 | 3 || 5 |
 





<


 
2013 www.disus.ru - «Бесплатная научная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.