WWW.DISUS.RU

БЕСПЛАТНАЯ НАУЧНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 

Pages:     || 2 |
-- [ Страница 1 ] --

Методы и модели в

экономике

Методические указания и контрольные задания для студентов заочной формы обучения по специальности 080507 «Менеджмент организации»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Государственное образовательное учреждение

Высшего профессионального образования

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ

Филиал в г. Воскресенске

Кафедра Прикладной математики

Методы и модели в экономике

Методические указания и контрольные задания для студентов

заочной формы обучения

по специальности 080507 «Менеджмент организации»

Составила: старший преподаватель кафедры

Прикладной математики Меньшова И. В.

г. Воскресенск, 2011г.

Настоящее пособие предназначено для студентов заочного обучения специальности 080507 «Менеджмент организации», изучающих курс «Методы и модели в экономике».

Учебный план изучения курса рассчитан на 100 часов, из которых для студентов заочной формы обучения отводится 16 часов на аудиторную работу и 84 часа – на самостоятельную. Также учебным планом предусмотрено выполнение контрольной работы для заочной формы обучения.

В пособии приведены необходимые методические материалы и указания для подготовки к зачету и выполнению контрольной работы, а также задания контрольной работы.

Оглавление

Введение 3

Общие методические указания 4

Рекомендуемая литература………………………………………………………………………………........5

Лекция №1 на тему «Математические методы в экономическом анализе и управлении» 6

Практические занятия 16

Лекция №2 на тему «Эконометрическое моделирование функции спроса» 28

1. Общие положения……………………………………………………………………………………………………………….29

2. Отбор факторов для построения функции спроса……………………………………………………………..34

3. Определение формы связи между спросом на товар и доходом потребителя. Расчет параметров уравнения парной линейной регрессии……………………………………………………………36

4. Расчет коэффициентов корреляции и детерминации. Проверка правильности выбранных факторов и формы связи………………………………………………………………………………………………………….42

5. Оценка точности построенной модели. Статистическая проверка гипотез о значимости параметров уравнения регрессии и самого уравнения в целом…………………………………………..45

6. Определение и анализ эластичности потребления по доходу………………………………………….49

7. Модели множественной регрессии. Построение функции спроса (потребления) от двух факторов…………………………………………………………………………………………………………………………………..51

Приложение А. Задания для контрольной работы…………………………………………..56

Приложение Б. Тесты контроля усвоенного материала………………..………….....58

Приложение В. Титульный лист контрольной работы...………………..………….....62

Введение

В настоящее время процессы принятия решений в экономике опираются на достаточно широкий круг экономико-математических методов и моделей. Ни одно серьёзное решение, затрагивающее управление деятельностью отраслей и предприятий, распределения ресурсов, изучение рыночной конъюнктуры, прогнозирование, планирование и т.п., не осуществляется без предварительного математического исследования конкретного процесса или его частей.

В этой связи изучение дисциплины «Методы и модели в экономике» направлено как на формирование у студентов понимания роли современной математики в экономике, так и на изучение наиболее важных экономико-математических методов исследования моделей и задач оптимизации.

Задачи данной дисциплины состоят в изучении математических методов социально-экономических процессов (СЭП), применения базовых методов математического моделирования СЭП при решении оптимизационных задач и выработке навыков решения трудоёмких прикладных экономико-математических задач с помощью компьютерных технологий.

Цель изучения данной дисциплины – подготовка специалиста экономического профиля к сознательному использованию математических методов исследования СЭП на основе соответствующих базовых моделей.

Изучение дисциплины предусматривает сочетание лекций, практических занятий и самостоятельную работу студентов. На лекциях излагается содержание дисциплины, проводится анализ основных математических понятий и методов. Практические занятия ориентированы на выработку у студентов умения и навыков решения типовых экономических задач. Руководствуясь принципом повышения уровня фундаментальной математической подготовки студентов с усилением её прикладной экономической направленности, предлагаются наиболее экономически значимые задачи, представляющие самостоятельный интерес и дающие возможность относительно продуктивно освоить алгоритм их решения при отсутствии учебника.

После изучения дисциплины «Методы и модели в экономике» студент должен:

  • иметь представление о методах системного анализа и управления СЭП;
  • знать основные понятия, определения и базовые математические методы, используемые для построения моделей СЭП;
  • уметь проводить расчёты и делать оценки параметров для базовых математических моделей СЭП;
  • уметь решать прикладные экономико-математические задачи, опираясь на базовые знания по математике, соответствующие Государственному образовательному стандарту.

Общие методические указания

При выполнении контрольной работы студентам заочного отделения необходимо руководствоваться следующими указаниями:

- номер варианта контрольной работы соответствует последней цифре учебного шифра студента;

- контрольная работа должна быть оформлена в тетради в клетку или на листах формата А4, где текст работы должен быть написан от руки;

- решение всех задач и пояснения к ним должны быть достаточно подробными; вычисления и чертежи – полными и аккуратными;

- необходимо перед выполнением задания полностью записать его условие;

- для удобства рецензирования рекомендуется оставлять поля.

При сдаче зачёта студент должен дать пояснения к решённым заданиям, выполненным в контрольной работе, а также решить задачи, предложенные преподавателем из списка задач, рекомендованных для самостоятельного решения (см. Практические занятия) или же ответить на вопросы итогового теста (см. приложение).

Рекомендуемая литература:

Основная:

  1. Кремер Н.Ш., Путко Б.А. Эконометрика: учебник для вузов / Под. ред. проф. Н.Ш. Кремера. – М.: ЮНИТИ – ДАНА, 2005.
  2. Кремер Н.Ш. и др. Высшая математика для экономистов. – М.: ЮНИТИ, 1997.
  3. Экономико-математические методы и прикладные модели: Учеб. пособие для вузов /В.В. Федосеев, А.Н. Гармаш, Д.М. Дайитбегов и др., Под ред. В.В. Федосеева. – М.: ЮНИТИ, 1999. -391 с.

Дополнительная:

  1. Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики. – М.: ЮНИТИ, 2001.
  2. Айвазян С.А., Енюков И.С., Мешалкин Л.Л. Прикладная статистика: исследование зависимостей. – М.: Финансы и статистика, 1995.
  3. Доугерти К. Введение в эконометрику / Пер. с англ. – М.: ИНФРА – М, 1997.
  4. Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике: Учебник.2-е изд. – М.: МГУ им. М.В. Ломоносова, Издательство «Дело и Сервис», 1999. – 368 с.
  5. Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс. / АНХ при правительстве РФ. – М.- Дело, 2004.
  6. Монахов А.В. Математические методы анализа экономики. – Спб: Питер, 2002. – 176 с.
  7. Красс М.С. Математика для экономических специальностей. – М.: ИНФРА-М,1999.
  8. Сборник задач по высшей математике для экономистов под ред. В.И. Ермакова. – М.: ИНФРА-М, 2002.
  9. Практикум по высшей математике для экономистов: Учеб. пособие для вузов / Кремер Н.Ш. и др.; под ред. проф. Н.Ш.Кремера – М.: ЮНИТИ – ДАНА, 2005. – 423 с.
  10. Эконометрика: учебник для вузов / Под. ред. чл. – кор. РАН И.И. Елисеевой. – М.: Финансы и статистика, 2005.

Лекция №1 на тему «Математические методы в экономическом анализе и управлении»

Современная экономическая теория включает как естественный, необходимый элемент математические модели и методы. Использование математики в экономике позволяет, во-первых, выделить и формально описать наиболее важные, существенные связи. Во-вторых, из чётко сформулированных исходных данных и соотношений можно сделать выводы, адекватные изучаемому объекту в той же мере, что и сделанные предпосылки. В-третьих, методы математики позволяют индуктивным путем получать новые знания об объекте: оценить форму и параметры зависимостей его переменных, в наибольшей степени соответствующие имеющимся наблюдениям. В-четвертых, использование языка математики позволяет точно и компактно излагать положения экономической теории, формулировать её понятия.

Использование математических методов в сфере управления - важнейшее направление совершенствования систем управления. Математические методы ускоряют проведение экономического анализа, способствуют более полному учету влияния факторов на результаты деятельности, повышению точности вычислений. Применение математических методов требует:

  1.  системного подхода к исследованию заданного объекта, учета взаимосвязей и отношений с другими объектами (предприятиями, фирмами);
  2.  разработки математических моделей, отражающих количественные показатели системной деятельности работников организации, процессов, происходящих в сложных системах, какими являются предприятия;
  3.  совершенствования системы информационного обеспечения управления предприятием с использованием электронно-вычислительной техники.

Решение задач экономического анализа математическими методами возможно, если они сформулированы математически, т.е. реальные экономические взаимосвязи и зависимости выражены с применением математического анализа. Это вызывает необходимость разработки математических моделей.

В управленческой практике для решения экономических задач прибегают к различным методам. На рисунке 1 приведены основные математические методы, применяемые в экономическом анализе.

Выбранные признаки классификации достаточно условны. Например, в сетевом планировании и управлении используются различные математические методы, а в значение термина "исследование операций" многие авторы вкладывают различное содержание.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Максимум Понтрягина для управления технико-экономическими процессами и ресурсами

 

 

Методы экспертных оценок

 

 

 

 

 

Рис. 1. Классификация основных математических методов, применяемых в экономическом анализе.

 

Методы элементарной математики используются в традиционных экономических расчетах при обосновании потребностей в ресурсах, разработке плана, проектов и т. п.

Классические методы математического анализа используются самостоятельно (дифференцирование и интегрирование) и в рамках других методов (математической статистики, математического программирования).

Статистические методы - основное средство исследования массовых повторяющихся явлений. Они применяются при возможности представления изменения анализируемых показателей как случайного процесса. Если связь между анализируемыми характеристиками не детерминированная, а стохастическая, то статистические и вероятностные методы становятся практически единственным инструментом исследования. В экономическом анализе наиболее известны методы множественного и парного корреляционного анализа.

Для изучения одновременных статистических совокупностей служат закон распределения, вариационный ряд, выборочный метод. Для многомерных статистических совокупностей применяются корреляции, регрессии, дисперсионный, ковариационный, спектральный, компонентный, факторный виды анализа.

Эконометрические методы базируются на синтезе трех областей знаний: экономики, математики и статистики. Основа эконометрии — экономическая модель, т.е. схематическое представление экономического явления или процессов, отражение их характерных черт с помощью научной абстракции [8].

Наиболее распространен метод анализа экономики "затраты — выпуск". Метод представляет матричные (балансовые) модели, построенные по шахматной схеме и наглядно иллюстрирующие взаимосвязь затрат и результатов производства.

Методы математического программирования — основное средство решения задач оптимизации производственно - хозяйственной деятельности. По сути, методы — средства плановых расчетов, и они позволяют оценивать напряженность плановых заданий, дефицитность результатов, определять лимитирующие виды сырья, группы оборудования.

Под исследованием операций понимаются разработки методов целенаправленных действий (операций), количественная оценка решений и выбор наилучшего из них. Цель исследования операций сочетание структурных взаимосвязанных элементов системы, в наибольшей степени обеспечивающее лучший экономический показатель.

Теория игр как раздел исследования операций представляет собой теорию математических моделей принятия оптимальных решений в условиях неопределенности или конфликта нескольких сторон, имеющих различные интересы.

Теория массового обслуживания на основе теории вероятности исследует математические методы количественной оценки процессов массового обслуживания. Особенность всех задач, связанных с массовым обслуживанием, — случайный характер исследуемых явлений. Количество требований на обслуживание и временные интервалы между их поступлениями имеют случайный характер, однако в совокупности подчиняются статистическим закономерностям, количественное изучение которых и есть предмет теории массового обслуживания.

Данная теория позволяет изучать системы, предназначенные для обслуживания массового потока требований случайного характера. Случайными могут быть как моменты появления требований, так и затраты времени на их обслуживание. Целью методов теории является отыскание разумной организации обслуживания, обеспечивающей заданное его качество, определение оптимальных (с точки зрения принятого критерия) норм дежурного обслуживания, надобность в котором возникает непланомерно, нерегулярно.

С использованием метода математического моделирования можно определить, например, оптимальное количество автоматически действующих машин, которое может обслуживаться одним рабочим или бригадой рабочих и т.п.

Типичным примером объектов теории массового обслуживания могут служить автоматические телефонные станции - АТС. На АТС случайным образом поступают “требования” - вызовы абонентов, а “обслуживание” состоит в соединении абонентов с другими абонентами, поддержание связи во время разговора и т.д. Задачи теории, сформулированные математически, обычно сводятся к изучению специального типа случайных процессов.

Исходя их данных вероятностных характеристик поступающего потока вызовов и продолжительности обслуживания и учитывая схему системы обслуживания, теория определяет соответствующие характеристики качества обслуживания (вероятность отказа, среднее время ожидания начала обслуживания т.п.).

Экономическая кибернетика анализирует экономические явления и процессы как сложные системы с точки зрения законов управления и движения в них информации. Методы моделирования и системного анализа наиболее разработаны именно в этой области.

Применение математических методов в экономическом анализе базируется на методологии экономико-математического моделирования хозяйственных процессов и научно обоснованной классификации методов и задач анализа. Все экономико-математические методы (задачи) подразделяются на две группы: оптимизационные решения по заданному критерию и неоптимизационные (решения без критерия оптимальности).

По признаку получения точного решения все математические методы делятся на точные (по критерию или без него получают единственное решение) и приближенные (на основе стохастической информации).

К оптимальным точным можно отнести методы теории оптимальных процессов, некоторые методы математического программирования и методы исследования операций, к оптимизационным приближенным - часть методов математического программирования, исследования операций, экономической кибернетики, эвристические.

К неоптимизационным точным принадлежат методы элементарной математики и классические методы математического анализа, экономические методы, к неоптимизационным приближенным — метод статистических испытаний и другие методы математической статистики.

Особенно часто применяются математические модели очередей и управления запасами. Например, теория очередей опирается на разработанную учеными А.Н. Колмогоровым и А.Л. Ханчиным теорию массового обслуживания.

Математическими моделями многочисленных задач технико-экономического содержания являются также задачи линейного программирования. Линейное программирование - это дисциплина, посвященная теории и методам решения задач об экстремумах линейных функций на множествах, задаваемых системами линейных равенств и неравенств.

Задача планирования работы предприятия

Для производства однородных изделий необходимо затратить различные производственные факторы - сырье, рабочую силу, станочный парк, топливо, транспорт и т.д. Обычно имеется несколько отработанных технологических способов производства, причем в этих способах затраты производственных факторов в единицу времени для выпуска изделий различны.

Количество израсходованных производственных факторов и количество изготовляемых изделий зависит от того, сколько времени предприятие будет работать по тому или иному технологическому способу.

Ставится задача рационального распределения времени работы предприятия по различным технологическим способам, т.е. такого, при котором будет произведено максимальное количество изделий при заданных ограниченных затратах каждого производственного фактора.

На основе метода математического моделирования в операционных исследованиях решаются также многие важные задачи, требующие специфических методов решения. К их числу относятся:



  • Задача надежности изделий.
  • Задача замены оборудования.
  • Теория расписаний (так называемая теория календарного планирования).
  • Задача распределения ресурсов.
  • Задача ценообразования.
  • Теория сетевого планирования.

Задача надежности изделий

Надежность изделий определяется совокупностью показателей. Для каждого из типов изделий существуют рекомендации по выбору показателей надежности.

Для оценки изделий, которые могут находиться в двух возможных состояниях - работоспособном и отказовом, применяются следующие показатели: среднее время работы до возникновения отказа (наработка до первого отказа), наработка на отказ, интенсивность отказов, параметр потока отказов, среднее время восстановления работоспособного состояния, вероятность безотказной работы за время t, коэффициент готовности.

Задача распределения ресурсов

Вопрос распределения ресурсов является одним из основных в процессе управления производством. Для решения этого вопроса в операционных исследованиях пользуются построением линейной статистической модели.

Задача ценообразования

Для предприятия вопрос образования цены на продукцию играет немаловажную роль. От того, как проводится ценообразование на предприятии, зависит его прибыль. Кроме того, в существующих сейчас условиях рыночной экономики цена стала существенным фактором в конкурентной борьбе.

Теория сетевого планирования

Сетевое планирование и управление, является системой планирования управления разработкой крупных хозяйственных комплексов, конструкторской и технологической подготовкой производства новых видов товаров, строительством и реконструкцией, капитальным ремонтом основных фондов путем применения сетевых графиков.

Сущность сетевого планирования и управления состоит в составлении математической модели управляемого объекта в виде сетевого графика или модели находящейся в памяти компьютера, в которых отражается взаимосвязь и длительность определенного комплекса работ. Сетевой график после его оптимизации средствами прикладной математики и вычислительной техники используется для оперативного управления работами.

Решение экономических задач с помощью метода математического моделирования позволяет осуществлять эффективное управление как отдельными производственными процессами на уровне прогнозирования и планирования экономических ситуаций и принятия на основе этого управленческих решений, так и всей экономикой в целом. Следовательно, математическое моделирование как метод тесно соприкасается с теорией принятия решений в менеджменте.

Математические модели использовались с иллюстративными исследованиями ещё Ф. Кене (1758г., «Экономическая таблица»), А. Смитом (Классическая макроэкономическая модель), Д. Риккардо (Модель международной торговли). В XIX веке большой вклад в моделирование рыночной экономики внесли математики Л. Вальрас, О. Курно, В. Парето и другие. В XX веке математические методы моделирования применялись очень широко, с их использованием связаны практически все работы, удостоенные Нобелевской премии по экономике (Р. Солоу, В. Леонтьев, Л. Канторович и другие). Развитие макроэкономики, микроэкономики, прикладных дисциплин связано со все более высоким уровнем их формализации. Основу для этого заложил прогресс в области прикладной математики. В России в начале XX века большой вклад в математическое моделирование экономики внесли В.К. Дмитриев и Е.Е. Слуцкий. В 1960-е – 80-е годы экономико-математическое направление было связано, в основном, с попытками формально описать «систему оптимального функционирования социалистической экономики» (Н.П. Федоренко, С.С. Шаталин). Строились многоуровневые системы моделей народно – хозяйственного планирования, оптимизационные модели областей и предприятий.

Математическая модель экономического объекта – это его гомоморфное отображение в виде совокупности уравнений, неравенств, логических отношений, графиков. Иными словами, модель – это условный образ объекта, построенный для упрощения его исследования. Предполагается, что изучение модели дает новые решения в той или иной ситуации.

Можно выделить 3 этапа проведения математического моделирования в экономике:

  1. ставятся цели и задачи исследования, проводится качественное описание объекта в виде экономической модели.
  2. формируется математическая модель изучаемого объекта, осуществляется выбор методов исследования. Далее исследуется модель с помощью этих методов.
  3. осуществляется обработка и анализ полученных результатов.

Математические модели, используемые в экономике, можно подразделить на классы по ряду признаков, относящихся к особенностям моделируемого объекта, цели моделирования и используемого инструментария: модели макро- и микроэкономические, теоретические и прикладные, оптимизационные и равновесные, статические и динамические.

Этапы экономико-математического моделирования

Основные этапы процесса моделирования уже рассматривались выше. В различных отраслях знаний, в том числе и в экономике, они приобретают свои специфические черты. Проанализируем последовательность и содержание этапов одного цикла экономико-математического моделирования.

1. Постановка экономической проблемы и ее качественный анализ. Главное здесь - четко сформулировать сущность проблемы, принимаемые допущения и те вопросы, на которые требуется получить ответы. Этот этап включает выделение важнейших черт и свойств моделируемого объекта и абстрагирование от второстепенных; изучение структуры объекта и основных зависимостей, связывающих его элементы; формулирование гипотез, объясняющих поведение и развитие объекта.

2. Построение математической модели. Это этап формализации экономической проблемы, выражения ее в виде конкретных математических зависимостей и отношений (функций, уравнений, неравенств и т.д.). Обычно сначала определяется основная конструкция (тип) математической модели, а затем уточняются детали этой конструкции (конкретный перечень переменных и параметров, форма связей). Таким образом, построение модели подразделяется в свою очередь на несколько стадий.

Неправильно полагать, что чем больше фактов учитывает модель, тем она лучше "работает" и дает лучшие результаты. То же можно сказать о таких характеристиках сложности модели, как используемые формы математических зависимостей (линейные и нелинейные), учет факторов случайности и неопределенности и т.д. Излишняя сложность и громоздкость модели затрудняют процесс исследования. Нужно учитывать не только реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом (при возрастании сложности модели прирост затрат может превысить прирост эффекта).

Одна из важных особенностей математических моделей - потенциальная возможность их использования для решения разнокачественных проблем. Поэтому, даже сталкиваясь с новой экономической задачей, не нужно стремиться "изобретать" модель; вначале необходимо попытаться применить для решения этой задачи уже известные модели.

В процессе построения модели осуществляется взаимосопоставление двух систем научных знаний - экономических и математических. Естественно стремиться к тому, чтобы получить модель, принадлежащую хорошо изученному классу математических задач. Часто это удается сделать путем некоторого упрощения исходных предпосылок модели, не искажающих существенных черт моделируемого объекта. Однако возможна и такая ситуация, когда формализация экономической проблемы приводит к неизвестной ранее математической структуре. Потребности экономической науки и практики в середине ХХ в. способствовали развитию математического программирования, теории игр, функционального анализа, вычислительной математики. Вполне вероятно, что в будущем развитие экономической науки станет важным стимулом для создания новых разделов математики.

3. Математический анализ модели. Целью этого этапа является выяснение общих свойств модели. Здесь применяются чисто математические приемы исследования. Наиболее важный момент - доказательство существования решений в сформулированной модели (теорема существования). Если удастся доказать, что математическая задача не имеет решения, то необходимость в последующей работе по первоначальному варианту модели отпадает; следует скорректировать либо постановку экономической задачи, либо способы ее математической формализации. При аналитическом исследовании модели выясняются такие вопросы, как, например, единственно ли решение, какие переменные (неизвестные) могут входить в решение, каковы будут соотношения между ними, в каких пределах и в зависимости от каких исходных условий они изменяются, каковы тенденции их изменения и т.д. Аналитическое исследование модели по сравнению с эмпирическим (численным) имеет то преимущество, что получаемые выводы сохраняют свою силу при различных конкретных значениях внешних и внутренних параметров модели.

Знание общих свойств модели имеет столь важное значение, что часто ради доказательства подобных свойств исследователи сознательно идут на идеализацию первоначальной модели. И все же модели сложных экономических объектов с большим трудом поддаются аналитическому исследованию. В тех случаях, когда аналитическими методами не удается выяснить общих свойств модели, а упрощения модели приводят к недопустимым результатам, переходят к численным методам исследования.

4. Подготовка исходной информации. Моделирование предъявляет жесткие требования к системе информации. В то же время реальные возможности получения информации ограничивают выбор моделей, предназначаемых для практического использования. При этом принимается во внимание не только принципиальная возможность подготовки информации (за определенные сроки), но и затраты на подготовку соответствующих информационных массивов. Эти затраты не должны превышать эффект от использования дополнительной информации.

В процессе подготовки информации широко используются методы теории вероятностей, теоретической и математической статистики. При системном экономико-математическом моделировании исходная информация, используемая в одних моделях, является результатом функционирования других моделей.

5. Численное решение. Этот этап включает разработку алгоритмов для численного решения задачи, составления программ на ЭВМ и непосредственное проведение расчетов. Трудности этого этапа обусловлены, прежде всего, большой размерностью экономических задач, необходимостью обработки значительных массивов информации.

Обычно расчеты по экономико-математической модели носят многовариантный характер. Благодаря высокому быстродействию современных компьютеров удается проводить многочисленные "модельные" эксперименты, изучая "поведение" модели при различных изменениях некоторых условий. Исследование, проводимое численными методами, может существенно дополнить результаты аналитического исследования, а для многих моделей оно является единственно осуществимым. Класс экономических задач, которые можно решать численными методами, значительно шире, чем класс задач, доступных аналитическому исследованию.

6. Анализ численных результатов и их применение. На этом заключительном этапе цикла встает вопрос о правильности и полноте результатов моделирования, о степени практической применимости последних.

Математические методы проверки могут выявлять некорректные построения модели и тем самым сужать класс потенциально правильных моделей. Неформальный анализ теоретических выводов и численных результатов, получаемых посредством модели, сопоставление их с имеющимися знаниями и фактами действительности также позволяют обнаруживать недостатки постановки экономической задачи, сконструированной математической модели, ее информационного и математического обеспечения.

Практические занятия

Тема 1. Методы линейной алгебры в экономическом анализе.

Цель. Решение экономических задач с элементами моделирования, опирающиеся на базовую основу линейной алгебры.

1. Справочный материал.

Понятие матрицы часто используется в практической деятельности, например, данные о выпуске продукции нескольких видов в каждом квартале года или нормы затрат нескольких видов ресурсов на производство продукции нескольких типов и т.д. удобно записывать в виде матрицы.

Литература:

  1. Кремер Н.Ш. и др. Высшая математика для экономистов. – М.: ЮНИТИ, 1997.
  2. Практикум по высшей математике для экономистов: Учеб. пособие для вузов / Кремер Н.Ш. и др.; под ред. проф. Н.Ш.Кремера – М.: ЮНИТИ – ДАНА, 2005. – 423 с.

Задача 1.1. В некоторой отрасли 4 завода выпускают 3 вида продукции. Матрица задаёт объёмы продукции на каждом заводе в первом квартале, матрица - соответственно во втором; (аij, вij) – объёмы продукции j –го типа на i –м заводе в 1-м и 2-м кварталах соответственно:

; .

Найти:

а) объёмы продукции;

б) прирост объёмов производства во втором квартале по сравнению с первым по видам продукции и заводам;

в) стоимостное выражение выпущенной продукции за полгода (в долларах), если – курс доллара по отношению к рублю.

Решение:

а) Объёмы продукции за полугодие определяются суммой матриц, т.е. С=А+В=, где сij – объём продукции j-го типа, произведённый за полугодие i-м заводом.

б) Прирост во втором квартале по сравнению с первым определяется разностью матриц, т.е.

Д=В-А= . Отрицательные элементы показывают, что на данном заводе объём производства уменьшился, положительные – увеличился, нулевые – не изменился.

в) Произведение C= (А+В) даёт выражение стоимости объёмов производства за квартал в долларах по каждому заводу и каждому предприятию.

Задача 1.2. Предприятие производит n типов продукции, используя m видов ресурсов. Нормы затрат ресурса i-го товара на производство единицы продукции j-го типа заданы матрицей затрат . Пусть за определённый отрезок времени предприятие выпустило количество продукции каждого типа , записанное матрицей .

Определить S – матрицу полных затрат ресурсов каждого вида на производство всей продукции за данный период времени, если

, .

Решение. Матрица полных затрат ресурсов S определяется как произведение матриц, т.е. S=AX.

, т.е за данный период времени будет израсходовано 930 ед. ресурса 1-го вида, 960 ед. ресурса 2-го вида, 450 ед. ресурса 3-го вида, 630 ед. ресурса 4-го вида.

Задача 1.3. Завод производит двигатели, которые могут либо сразу потребовать дополнительной регулировки (в 40% случаев), либо сразу могут быть использованы (в 60% случаев). Как показывают статистические исследования, те двигатели, которые изначально требовали регулировки, потребуют дополнительной регулировки через месяц в 65% случаев, а в 35% случаев через месяц будут работать хорошо. Те же двигатели, которые не требовали первоначальной регулировки, потребуют её через месяц в 20% случаев и продолжат хорошо работать в 80% случаев. Какова доля двигателей, которые будут работать хорошо или потребуют регулировки через 2 месяца после выпуска? Через 3 месяца?

Решение.

В момент после выпуска доля хороших двигателей составляет 0,6, а доля требующих регулировки – 0,4. Через месяц доля хороших составит: 0,6.0,8+0,4.0,35=0,62. Доля требующих регулировки: 0,6.0,2+0,4.0,65=0,38. введём строку состояния Xt в момент t; Xt=(x1t; x2t), где x1t – доля хороших двигателей, x2t – доля двигателей, требующих регулировки в момент t.

Матрица перехода , где - доля двигателей, которые в настоящее время находятся в состоянии ( 1- «хороший», 2- «требует регулировки»), а через месяц – в состоянии .

Очевидно, что для матрицы перехода сумма элементов каждой строки равна 1, все элементы неотрицательны.

Очевидно, =(0,6 0,4), .

Тогда через месяц ,

через 2 месяца ; через 3 месяца .

Найдём матрицы ;

.

Отметим, что если - матрица перехода, то - тоже матрица перехода при любом натуральном t. Теперь

,

.

Очевидно, .

Задача 1.4. Фирма состоит из двух отделений, суммарная величина прибыли которых в минувшем году составила 12 млн. усл. ед. На этот год запланировано увеличение прибыли первого отделения на 70%, второго – на 40%. В результате суммарная прибыль должна вырасти в 1,5 раза. Какова величина прибыли каждого из отделений: а) в минувшем году; б) в текущем году?

Решение.

Пусть и - прибыли первого и второго отделений в минувшем году. тогда условие задачи можно записать в виде системы: Решив систему, получим Следователь, а) прибыль в минувшем году первого отделения -4 млн. усл. ед., а второго – 8 млн. усл. ед.; б) прибыль в этом году первого отделения 1,7.4=6,8 млн. усл. ед., второго 1,4.8=11,2 млн. усл. ед.

2. Задания для самостоятельной работы.

1.1. Три завода выпускают четыре вида продукции. Необходимо: а) найти матрицу выпуска продукции за квартал, если заданы матрицы помесячных выпусков А1, А2, А3; б) найти матрицы приростов выпуска продукции за каждый месяц В1 и В2 и проанализировать результаты:

; ; .

1.2. Предприятие производит мебель трёх видов и продаёт её в четырёх регионах. Матрица задаёт цену реализации единицы мебели i-го типа в j-м регионе. Определить выручку предприятия в каждом регионе, если реализация мебели за месяц задана матрицей .

1.3. По условию задачи 2 определить:1) полные затраты ресурсов 3-х видов на производство месячной продукции, если заданы нормы затрат матрицей и объём выпуска каждого из двух типов продукции ;

2) стоимость всех затраченных ресурсов, если задана стоимость единиц каждого ресурса .

1.4. В ремонтную мастерскую поступают телефонные аппараты, 70 % которых требуют малого ремонта, 20 % - среднего ремонта, 10% - сложного ремонта. Статистически установлено, что 10% аппаратов прошедших малый ремонт, через год требуют малого ремонта, 60% - среднего, 30% -сложного ремонта. Из аппаратов, прошедших средний ремонт, 20% требуют через год малого ремонта, 50% - среднего, 30% - сложного ремонта. Из аппаратов, прошедших сложный ремонт, через год 60% требуют малого ремонта, 40% - среднего. Найти доли из отремонтированных в начале года аппаратов, которые будут требовать ремонта того или иного вида: через 1 год; 2 года;3 года.

Тема 2. Методы математического анализа для построения моделей СЭП.

Цель. Решение экономических задач с элементами моделирования, в которых применяются методы математического анализа.

1. Справочный материал.

В практической деятельности часто приходится сталкиваться с такими задачами, которые рационально решать методами математического анализа. Это задачи на нахождение объёма продукции при известном значении прибыли, определении уровня потребления товаров при известном доходе, определение момента времени рентабельности производства, определение размеров вклада при известных начальных вложениях и т.п.

Функции находят широкое применение в экономической теории и практике. Спектр используемых в экономике функций весьма широк: от простейших линейных до функций, получаемых по определённому алгоритму с помощью рекуррентных соотношений, связывающих состояния изучаемых объектов в разные периоды времени.

Наиболее часто используемые в экономике следующие функции:

  1. Функция полезности (функция предпочтения) – зависимость результата, эффекта некоторого действия от уровня (интенсивности) этого действия.
  2. Производственная функция – зависимость результата производственной деятельности от обусловивших его факторов.
  3. Функция выпуска – зависимость объёма производства от наличия или потребления ресурсов.
  4. Функция издержек – зависимость издержек производства от объёма продукции.
  5. Функции спроса, потребления и предложения – зависимость объёма спроса, потребления или предложения на отдельные товары или услуги от различных факторов (например, цены, дохода и т.п.).

Учитывая, что экономические явления и процессы обуславливаются действием различных факторов, для их исследований широко используются функции нескольких переменных. Среди этих функций выделяют мультипликативные функции, позволяющие представить зависимую переменную в виде произведения факторных переменных, обращающих его в нуль при отсутствии действия хотя бы одного фактора.

Используются также сепарабельные функции, которые дают возможность выделить влияние различных факторов переменных на зависимую переменную, и в частности, аддитивные функции, представляющие одну и ту же зависимую переменную как при суммарном, но раздельном воздействии нескольких факторов, так и при одновременном их воздействии.

Литература:

1. Кремер Н.Ш. и др. Высшая математика для экономистов. – М.: ЮНИТИ, 1997.

2. Практикум по высшей математике для экономистов: Учеб. пособие для вузов / Кремер Н.Ш. и др.; под ред. проф. Н.Ш.Кремера – М.: ЮНИТИ – ДАНА, 2005.

Задача 2.1. Издержки y (в руб.) на изготовление партии деталей определяются по формуле, где - объём партии. Для первого варианта технологического процесса . Для второго варианта известно, что (руб.) при (дет.) и (руб.) при (дет.). Провести оценку двух вариантов технологического процесса и найти себестоимость продукции для обоих вариантов при (дет.)

Решение.

Для второго варианта определяем параметры и из системы уравнений:

откуда и , т.е. .

Точка (х0,y0) пересечения двух прямых находится из системы их уравнений:

откуда , . Очевидно, при объёме партии выгоднее второй вариант технологического процесса, при - первый вариант. Себестоимость продукции (руб.) при по первому варианту составляет , а по второму - .

Задача 2.2. Постоянные издержки составляют 125 тыс.руб. в месяц, а переменные издержки - 700 руб. за каждую единицу продукции. Цена единицы продукции 1200 руб. Найти объём продукции , при котором прибыль равна: а) нулю (точка безубыточности); б) 105 тыс.руб. в месяц.

Решение:

а) Издержки производства единиц продукции составят: (тыс.руб.). Совокупный доход (выручка) от реализации этой продукции , а прибыль (тыс.руб.). Точка безубыточности, в которой , равна (ед.).

б) Прибыль (тыс.руб.), т.е. при (ед.).

Задача 2.3. Продолжительность выполнения (мин.) при повторных операциях связана с числом этих операций зависимостью . Вычислить, сколько минут выполняется работа при 50 операциях, если известно, что при , а при .

Решение. Найдём параметры и , учитывая, что , . Получаем систему: решая которую найдём , .

Итак, при , (мин.)

2. Задания для самостоятельной работы.

2.1. Издержки перевозки двумя видами транспорта выражаются уравнениями: и , где - расстояния в сотнях километров, - транспортные расходы. Начиная с какого расстояния более экономичен второй вид транспорта?

2.2. Зная, что изменение объёма производства с изменением производительности труда происходит по прямой линии, составить её уравнение, если при =3 =185, а при =5 =305. Определить объём производства при =20.

2.3. Предприятие купило автомобиль стоимостью 150 тыс.руб. Ежегодная норма амортизации составляет 9%. Полагая зависимость стоимости автомобиля от времени линейной, найти стоимость автомобиля через 4,5 года.

2.4. Зависимость уровня потребления некоторого вида товаров от уровня дохода семьи выражается формулой: . Найти уровень потребления товаров при уровне дохода семьи 158 ден.ед. Известно, что при =50 =0; =74 =0,8; =326 =2,3.

2.5. Банк выплачивает ежегодно 5% годовых (сложный процент). Определить: а) размер вклада через 3 года, если первоначальный вклад составил 10 тыс. руб.; б) размер первоначального вклада, при котором через 4 года вклад (вместе с процентными деньгами) составит 10 000 руб.

Указание. Размер вклада через t лет определяется по формуле , где p-процентная ставка за год, Q0 –первоначальный вклад.

2.6. Затраты на производство продукции (тыс.руб.) выражаются уравнением , где -количество месяцев. Доход от реализации продукции выражается уравнением . Начиная с какого месяца производство будет рентабельным?

Тема 3. Предельный анализ экономических процессов.

Цель. Рассмотреть применение математических методов для нахождения предельных величин в оптимизационных задачах.

1.Справочный материал.

Производная функции помимо геометрического и механического смысла имеет еще и экономический смысл. Во-первых, производная объема произведенной продукции по времени есть производительность труда в момент . Во-вторых, существует ещё одно понятие, характеризующее экономический смысл производной. Если издержки производства y рассматривать как функцию количества выпускаемой продукции x, - прирост продукции, - приращение издержек производства, а - среднее приращение издержек производства на единицу продукции, тогда производная равная выражает предельные издержки производства и характеризует приближённо дополнительные затраты на производство единицы дополнительной продукции.

Предельные издержки зависят от уровня производства (количества выпускаемой продукции) x и определяются не постоянными производственными затратами, а лишь переменными (на сырьё, топливо ит.п.). Аналогичным образом могут быть определены предельная выручка, предельный доход, предельный продукт, предельная полезность и др.предельные величины.

Предельные величины характеризуют не состояние, а процесс, то есть изменение экономического объекта. Таким образом, производная выступает как скорость изменения некоторого экономического объекта (процесса) по времени или относительно другого исследуемого фактора. Следует учесть, что экономика не всегда позволяет использовать предельные величины в силу неделимости многих объектов экономических расчётов и прерывности (дискретности) экономических показателей во времени (например, годовых, квартальных, месячных ит.д.). Вместе с тем в ряде случаев можно отвлечься от дискретности показателей и эффективно предельные величины.

Для исследования экономических процессов и решения прикладных задач часто используется понятие эластичности функции.

Эластичностью функции называется предел отношения относительного приращения функции y к относительному приращению переменной x при :

. (1)

Эластичность функции показывает приближённо, на сколько процентов изменится функция y=f(x) при изменении независимой переменной x на 1%. Это мера реагирования одной переменной величины на изменение другой.

Отметим свойства эластичности функции.

1. Эластичность функции равна произведению независимой переменной x на темп изменения функции , т.е. .

2. Эластичность произведения (частного) двух функций равна сумме (разности) эластичностей этих функций: , .

Эластичность функций применяется при анализе спроса и потребления. Например, эластичность спроса y относительно цены x – коэффициент, определяемый по формуле (1) и показывающий приближённо, на сколько процентов изменится спрос (объем потребления) при изменении цены (или дохода) на 1%.

Если эластичность спроса (по абсолютной величине) , то спрос считают эластичным, если - нейтральным, если - неэластичным относительно цены (или дохода).

Предельные издержки .

Оптимальным значением выпуска для производителя является то значение x единиц продукта, при котором прибыль P(x) оказывается наибольшей.

Литература:

  1. Кремер Н.Ш. и др. Высшая математика для экономистов. – М.: ЮНИТИ, 1997.
  2. Практикум по высшей математике для экономистов: Учеб. пособие для вузов / Кремер Н.Ш. и др.; под ред. проф. Н.Ш.Кремера – М.: ЮНИТИ – ДАНА, 2005.

Задача 3.1. Функция издержек имеет вид . На начальном этапе фирма организует производство так, чтобы минимизировать средние издержки A(x). В дальнейшем на товар устанавливается цена, равная 4 усл.ед. за единицу. На сколько единиц товара фирме следует увеличить выпуск?

Решение. Средние издержки принимают минимальное значение при x=10. Предельные издержки . При установившейся цене оптимальное значение P(x) выпуска задаётся условием максимизации прибыли: , т.е. 4=M(x), откуда . Таким образом, производство следует увеличить на 10 единиц.

Задача 3.2. Определить оптимальное для производителя значение выпуска x0, при условии, что весь товар реализуется по фиксированной цене за единицу p=14, если известен вид функции издержек .

Решение. По формуле прибыли получаем: .

Находим производную прибыли по объёму: , тогда хопт=2.

Задача 3.3. Найти максимальную прибыль, которую может получить фирма производитель, при условии, что весь товар реализуется по фиксированной цене за единицу р=10,5 и функция издержек имеет вид .

Решение. Находим значение прибыли .

Производная прибыли по объёму имеет вид: . Тогда , . .

Задача 3.4. Объём продукции u, произведённый бригадой рабочих, может быть описан уравнением (ед.), , где t – рабочее время в часах. Вычислить производительность труда, скорость и темп её изменения через час после начала работы и за час до её окончания.

Решение. Производительность труда выражается производной (ед./час), а скорость и темп изменения производительности – соответственно производной и логарифмической производной : (ед./ч2),

(ед./ч).

В заданные моменты времени и соответственно имеем: z(t)=112,5 (ед./ч), z/(t)=-20(ед./ч2), Tz(7)=-0,24 (ед./ч).

Итак, к концу работы производительность труда существенно снижается; при этом изменение знака z’(t) и Tz(t) с плюса на минус свидетельствует о том, что увеличение производительности труда в первые часы рабочего дня сменяется её снижением в последние часы.

Задача 3.5. Опытным путём установлены функции спроса и предложения , где q и s – количество товара, соответственно покупаемого и предлагаемого на продажу в единицу времени, p – цена товара.

Найти: а) равновесную цену, т.е. цену при которой спрос равен предложению;

б) эластичность спроса и предложения для этой цены;

в) изменение дохода при увеличении цены на 5% от равновесной.

Решение.

а) Равновесная цена находится из условия q=s, тогда , откуда p=2, т.е равновесная цена 2 ден.ед.

б) Найдём эластичность по спросу и предложению по формуле (1)

.

; . Для равновесной цены p=2 имеем ; . Так как полученные значения эластичностей по абсолютной величине меньше 1, то и спрос и предложение данного товара при равновесной (рыночной) цене неэластичны относительно цены. Это означает, что изменение цены не приведёт к резкому изменению спроса и предложения. Так, при увеличении цены p на 1% спрос уменьшится на 0,3%, а предложение увеличится на 0,8%.

в) При увеличении цены p на 5% от равновесной спрос уменьшится на 5.0,3=1,5%, следовательно, доход возрастёт на 3,5%.

Задача 3.6. Зависимость между издержками производства y и объёмом выпускаемой продукции x выражается функцией (ден.ед.). Определить средние и предельные издержки при объёме продукции 10 ед.

Решение. Функция средних издержек выражается соотношением ; при x=10 средние издержки (на единицу продукции) равны (ден. ед.). Функция предельных издержек выражается производной ; при x=10 предельные издержки составят (ден.ед.). Итак, если средние издержки на производство единицы продукции составляют 45 ден.ед., то предельные издержки, т.е. дополнительные затраты на производство дополнительной единицы продукции при данном уровне производства (объёме выпускаемой продукции 10 ед.), составляют 35 ден.ед.

Задача 3.7. Выяснить, чему равны предельные и средние полные затраты предприятия, если эластичность полных затрат равна 1?

Решение. Пусть полные затраты предприятия y выражаются функцией , где x – объём выпускаемой продукции. Тогда средние затраты y1 на производство единицы продукции . Эластичность частного двух функции равна разности их эластичностей, т.е. .

По условию , следовательно, . Это означает, что с изменением объёма продукции средние затраты на единицу продукции не меняются, т.е., откуда .

предельные издержки предприятия определяются производной . Итак, т.е предельные издержки равны средним издержкам(полученное утверждение справедливо только для линейных функций издержек).

2. Задания для самостоятельной работы.

3.1. Определить оптимальное для производителя значение выпуска x0, при условии, что весь товар реализуется по фиксированной цене за единицу p=8 и известен вид функции издержек .

    1. 3.2. Найти максимальную прибыль, которую может получить фирма-производитель, при условии, что весь товар реализуется по фиксированной цене за единицу p =40 и известен вид функции издержек .
    2. 3.3. При производстве монополией x единиц товара за единицу . Определить оптимальное для монополии значение выпуска x0 (предполагается что весь произведённый товар реализуется), если издержки имеют вид .
    3. 3.4. Функция издержек имеет вид . Доход от реализации единицы продукции равен 50. Найти максимальное значение прибыли, которое может получить производитель.
    4. 3.5. На начальном этапе производства фирма минимизирует средние издержки, причём функция издержек имеет вид . В дальнейшем цена на единицу товара устанавливается равной р=37. На сколько единиц товара фирме следует увеличить выпуск? На сколько при этом изменятся средние издержки?

3.6. Зависимость между себестоимостью единицы продукции y (тыс. руб.) и выпуском продукции x (млрд.руб.) выражается функцией . Найти эластичность себестоимости при выпуске продукции, равном 60 млрд.руб.

Лекция №2 на тему «Эконометрическое моделирование функции спроса»

План:

  1. Общие положения
  2. Отбор факторов для построения функции спроса
  3. Определение формы связи между спросом на товар и доходом потребителя. Расчет параметров уравнения парной линейной регрессии
  4. Расчет коэффициентов корреляции и детерминации. Проверка правильности выбранных факторов и формы связи
  5. Оценка точности построенной модели. Статистическая проверка гипотез о значимости параметров уравнения регрессии и самого уравнения в целом
  6. Определение и анализ эластичности потребления по доходу
  7. Модели множественной регрессии. Построение функции спроса (потребления) от двух факторов

Тесты контроля усвоенного материала

Литература

Приложение А. Варианты исходных данных для выполнения контрольной работы

1. ОБЩИЕ ПОЛОЖЕНИЯ

Проблема изучения взаимосвязей экономических показателей явля­ется одной из важнейших в экономическом анализе. Экономическая поли­тика заключается в регулировании этих параметров (переменных). Она должна основываться на знании того, как эти переменные влияют на дру­гие переменные, являющиеся ключевыми для лица, принимающего реше­ние (ЛПР). Построение, проверка, улучшение экономических моделей не­возможны без статистического анализа их переменных с использованием реальных статистических данных. В этом смысле вся сфера экономических исследований - есть изучение взаимосвязей экономических переменных. Инструментом их базового анализа является методы статистики и эконо­метрики.

Эконометрика - наука, исследующая количественные закономерно­сти и взаимосвязи в экономике при помощи методов математической ста­тистики.

Название «эконометрика» введено в 1926г. норвежским экономи­стом и статистиком Р. Фришем. Буквальный перевод этого понятия - «из­мерения в экономике».

В настоящее время общепризнанно следующее определение:

Эконометрика - это самостоятельная научная дисциплина, объеди­нившая совокупность теоретических результатов, приемов, методов и мо­делей, предназначенных для того, чтобы на базе:

    1. экономической теории;
    2. экономической статистики;
    3. математико-статистического инструментария

придавать конкретное количественное выражение общим (качест­венным) закономерностям, обусловленным экономической теорией.

Можно сказать, что суть эконометрики - синтез экономики, эконо­мической статистики и математики. Говоря об экономической теории в рамках эконометрики, интересуются не только выяснением объективно существующих качественных экономических законов и связей, но и их формализацией, т.е. спецификацией соответствующих моделей с учетом их идентифицируемости.

В экономической статистике в рамках эконометрики интересуются, в основном, лишь информационным обеспечением анализируемой модели. Под математико-статическим инструментарием эконометрики подразуме­вают не вся математическая статистика, а лишь такие ее разделы, как клас­сическая и обобщенная линейные модели регрессионного анализа, анализ временных рядов, построение и анализ системы одновременных уравне­ний.

«Приземление» экономической теории на базу конкретной эконо­мической статистики и извлечение из этого с помощью математических методов определенных количественных взаимосвязей — сущность эконо­метрики и ее отличие от математической экономики, описательной эконо­мической статистики и собственно математической статистики.

Математическая экономика (т.е. математически сформулированная экономическая теория), изучает взаимосвязи между экономическими пе­ременными на неколичественном, общем уровне. Она становится эконо­метрикой, когда коэффициенты, представленные в общем виде в этих взаимосвязях, заменяются конкретными численными значениями, полу­ченными из соответствующих экономических данных.

Отсюда - главное назначение эконометрики: экономические и со­циально-экономические приложения, т.е. модельное описание конкретных количественных взаимосвязей, существующих между экономическими по­казателями.

Классификацию задач, решаемых эконометрикой, удобно предста­вить в виде схемы, представленной на рисунке 1.

 Рисунок 1. Классификация задач, -198

Рисунок 1. Классификация задач, решаемых эконометрикой

Основные этапы эконометрического моделирования:

1 этап (постановочный): определение конечной цели моделирования, набора участвующих в модели факторов и показателей на основе качественного анализа иссле­дуемого экономического процесса.

2 этап (априорный): предмодельный анализ экономической сущности изучаемого явления, формирование и формализация априорной информации.

3 этап (параметризация): моделирование, т.е. выбор общего вида математической модели процесса, состава и формы входящих в нее связей.

Основная задача, решаемая на этом этапе, - спецификация модели, т.е. выражение в математической форме обнаруженных связей и соотношений; установление состава эндогенных и экзогенных переменных; формулировка исходных предпосылок и ограничений модели. От того, насколько удачно решена проблема спецификации модели, в значительной степени зависит успех всего эконометрического моделирования.

4 этап (информационный): формирование репрезентативной выборочной статистической сово­купности, сбор необходимой статистической информации: регистрация значений участвующих в модели факторов и показателей на различных временных и пространственных интервалах функционирования явления.

5 этап (идентификация модели): статистический анализ модели, прежде всего, выбор методов оценивания неизвестных параметров модели в соот­ветствии с особенностями объектов исследования и спецификой имеющихся данных наблюдений и статистическое оценивание этих параметров.

6 этап (верификация модели): сопоставление модельных и расчетных данных, проверка адекватности модели, оценка точности модельных данных. На этом этапе рассчитываются:

  1. коэффициенты корреляции (корреляционное отношение) и детерминации, используемые для проверки пра­вильности произведенного отбора факторов и принятой формы связи;
  2. эмпирические и теоретические коэффициенты эластичности зависимой переменной по факторам, сравнение которых между собой также применяется в качестве критерия проверки адекватности модели;
  3. статистические t – критерий и F – критерий, а также их доверительные интервалы, для проверки статистической значимости коэффициентов регрессии и детерминации соответственно.

В результате интерпретации полученных результатов, установления их адекватности поставленным целям, принимается решение относительно следующего цикла эконометрического исследования.

Целью контрольной работы является построение и анализ функции спроса на товар А. Эконометрические модели спроса строятся в виде уравнений парной и множественной регрессии, в которых в качестве зависимой пе­ременной величины (функции) выступает спрос, а в качестве независимых переменных величин (аргументов) - формирую­щие его причинные факторы. Наиболее существенными факто­рами, оказывающими влияние на спрос, являются: цена на дан­ный товар, цены на другие товары, доход, половозрастной со­став семьи, размер семьи, вкусы и привычки и т.д. Как прави­ло, анализ спроса начинают с построения функции одной пе­ременной. Для этого все факторы, кроме одного, считают неиз­менными или закрепляют на каком-либо уровне. Если в каче­стве формирующего фактора выбрать цену на данный товар, то получим так называемую функцию спроса от цены. Если же в качестве аргумента выбрать доход, то получим функцию по­требления (функцию спроса от дохода).

В процессе выполнения работы необходимо выполнить три цикла эконометрического исследования, каждый из которых состоит из шести описанных выше этапов.

Первый цикл включает обоснование и проверку адекватности линейной модели парной регрессии, независимым фактором в которой является денежный доход потребителя. Исходные данные для выполнения этого цикла приведены в приложении (y обозначает спрос на товар А, х – средний доход в расчете на 1 человека).

Во втором цикле для тех же исходных данных в соответствии со всеми шестью этапами анализируется степенная функция.

В третьем цикле добавляется еще один фактор – цена товара и анализируется линейная модель множественной регрессии.

В результате проверки по всем необходимым критериям должен быть сделан выбор в пользу одной из трех исследованных моделей.

2. ОТБОР ФАКТОРОВ ДЛЯ ПОСТРОЕНИЯ ФУНКЦИИ СПРОСА

Включение в эконометрическую модель того или иного набора факторов связано, прежде всего, с представлением исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями. Факторы, включаемые в модель, должны отвечать следующим требованиям:

  1. Они должны быть количественно измеримы. Если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность (например, в модели урожайности качество почвы задается в виде баллов; в модели стоимости объектов недвижимости учитывается место нахождения недвижимости: районы могут быть проранжированы)
  2. Факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.

Процесс формирования и развития спроса населения находится под воздействием множества самых различных факторов: темпов и пропорций производства, национального дохода и пропорций его распределения на фонды накопления и потребления, денежных доходов населения и их распределения между отдельными социальными и экономическими группами трудящихся, уровня и соотношения розничных цен товаров, социального и половозрастного состава населения, его численности, размера и состава семей, развития общественных фондов потребления, моды, потребительских привычек, национальных особенностей, природно-климатических условий и др.

Очевидно, что все это многообразие факторов не может быть непосредственно включено в эконометрическую модель спроса. В модели учитываются лишь наиболее существенные факторы, то есть те, которые вызывают значительные изменения в спросе населения на данный товар, оказывают определяющее воздействие на процесс формирования и развития этого спроса. Все факторы подразделяются на две самостоятельные группы:

  1. общие факторы, воздействующие на спрос по всем или по большинству товаров;
  2. специфические, или частные, факторы, оказывающие влияние на спрос лишь по отдельным товарам или их группам.

К числу общих факторов можно отнести размеры денежных доходов населения, уровень и соотношение розничных цен, численность населения, его социальный состав.

К числу специфических факторов относятся размеры натуральных поступлений продуктов питания из источников, не связанных с рынком, степень обеспеченности семей отдельными видами предметов длительного пользования, интенсивность жилищного строительства и некоторые другие. Эти факторы должны учитываться при анализе и прогнозировании спроса на продукты питания, на предметы длительного пользования и т.п.

Эффективными методами отбора наиболее существенных факторов являются качественный анализ, корреляционный анализ, а также анализ результатов специально проводимых опросов мнений специалистов (экспертных оценок).

С конца 19-го века, когда немецкий статистик Энгель сформулировал законы изменения спроса на различные товары в зависимости от изменения дохода потребителя, в качестве важнейшего фактора, влияющего на потребление товаров, рассматривается денежный душевой доход.

Исходные данные, характеризующие изменение душевого дохода (Х) и расхода на потребление товара А (Y) приведены в таблице 1.

Таблица 1

Исходные данные



Pages:     || 2 |
 




<
 
2013 www.disus.ru - «Бесплатная научная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.