Слабогорючие химически стойкие эпоксидные полимеррастворы
На правах рукописи
АБРАМОВВАСИЛИЙ ВИКТОРОВИЧ
ЭФФЕКТИВНЫЕ СЛАБОГОРЮЧИЕ ХИМИЧЕСКИ СТОЙКИЕ ЭПОКСИДНЫЕ ПОЛИМЕРРАСТВОРЫ
Специальность 05.23.05 – Строительные материалы и изделия
АВТОРЕФЕРАТ
диссертации на соискание ученой степени
кандидата технических наук
Москва – 2012
Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования
«Московский государственный строительный университет».
Научный руководитель -доктор технических наук, профессор,Баженов Юрий Михайлович
Официальные оппоненты - Козлов Валерий Васильевич, доктор технических наук, профессор,ФГБОУ ВПО«Московский государственный строительный университет», профессор кафедры Строительные материалы
- Суханов Михаил Александрович,кандидат технических наук, доцент,ФАОУ ДПО «Государственная академия профессиональной переподготовки и повышения квалификации руководящих работников и специалистов инвестиционной сферы»
Ведущая организация -Государственное унитарное предприятие «Научно-исследовательский институт Московского строительства»
Защита состоится «15» мая 2012г. в 14 часов на заседании диссертационного совета Д.212.138.02 при ФГБОУ ВПО «Московский государственный строительный университет» по адресу: 129337, г. Москва, Ярославское шоссе д.26, телестудия «Открытая сеть».
С диссертацией можно ознакомится в библиотеке ФГБОУ ВПО «Московский государственный строительный университет».
Автореферат разослан «13» апреля 2012г.
Ученый секретарь
диссертационного совета Алимов Лев Алексеевич
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность работы.
Реконструкция и ремонт промышленных зданий и сооружений вплотную связана с проблемой омоноличивания строительных конструкций. Для ремонта зданий и сооружений первого класса ответственности, подверженных коррозионным воздействиям,особенно эффективно применение эпоксидных полимеррастворов.Однако эпоксидные полимеррастворы относятся к горючим материалам с высокой дымообразующей способностью. Решение задачи снижения горючести эпоксидных полимеррастворов можно достичь подбором эффективных галогенсодержащих антипиренов, а повышение прочности –улучшением адгезии полимерной матрицы к минеральным наполнителям за счет их обработки низкотемпературной неравновесной плазмой.
Работа выполнена в соответствие с НИР ФГБОУ ВПО МГСУ, Федеральной целевой программой «Научные и научно-педагогические кадры инновационной России на 2009-2013 годы» (мероприятие 1.2.2), Федеральной целевой программой «Исследования и разработки по приоритетным направлениям развития научно-технического комплекса России на 2007-2013 годы» (мероприятие 5.2).
Цель и задачи исследований.
Целью диссертационной работы является разработка эффективных слабогорючих химически стойких полимеррастворов, предназначенных для ремонта и реконструкции строительных конструкций.
Для решения поставленной цели необходимо было решить следующие задачи:
- обосновать возможность получения слабогорючих химически стойких эпоксидных полимеррастворов, обладающих высокими эксплуатационными свойствами;
- исследовать влияние содержанияминеральных наполнителей на термические и пожароопасные свойства эпоксидных полимеррастворов;
- исследовать влияние содержания и химической природы промышленных и синтезированных бромхлорсодержащих антипиренов на термические, пожароопасные и физико-механические свойства эпоксидных полимеррастворов;
- установить влияние плазмохимической обработки тонкодисперсных минеральных наполнителей на пожароопасные и физико-механические свойства эпоксидных полимеррастворов;
- выбрать наиболее эффективные компоненты иоптимизировать состав эпоксидных полимеррастворов, предназначенных для ремонта и реконструкции строительных конструкций;
- провести комплексное изучение эксплуатационных свойств и химической стойкости разработанных эпоксидных полимеррастворов оптимального состава;
- установить зависимости эксплуатационных свойств и химической стойкости слабогорючих полимеррастворов от продолжительности воздействие агрессивных сред;
- разработать технологии приготовления и применения высоконаполненных слабогорючих эпоксидных полимеррастворов, используемых для ремонта и реконструкции строительных конструкций;
- провести опытно-промышленную и промышленную апробацию слабогорючих химически стойких полимеррастворов, определить технико-экономические показатели разработанных материалов.
Научная новизна работы:
- обоснована возможность снижения горючести иповышения эксплуатационных показателей слабогорючих химически стойких эпоксидных полимеррастворов, используемых для ремонта и реконструкции строительных конструкций, за счет применения эффективных галогенсодержащих антипиренов и плазмохимической обработки тонкодисперсных минеральных наполнителей;
- установлены зависимости термических и прочностных показателей, горючести и дымообразующей способности эпоксидных полимеррастворов от содержания и химической природы промышленных и синтезированных галогенсодержащих антипиренов;
- методами ТГА, ДТА и ДСК установлено, что галогенсодержащие антипирены, которые наиболее полно соответствующие характеру разложения эпоксидного полимера ЭД-20, обладают и более высокой эффективностью пламягасящего действия;
- получены двухфакторные математические зависимости прочностных характеристик и показателей пожарной опасности эпоксидных полимеррастворов от содержания минеральных наполнителей и галогенсодержащих антипиренов;
- установлено влияние условий плазмохимической обработки тонкодисперсных минеральных наполнителей и смешанного железооксидного пигмента на прочность эпоксидных полимеррастворов.
Практическая значимость работы заключается в том, что:
- установлено, что оптимальным содержанием галогенсодержащих антипиренов различной химической природы при получении слабогорючих химически стойких эпоксидных полимеррастворов является 8-10 масс.%;
- показана возможностьполучения слабогорючих (Г1) с умеренной дымообразующей способностью (Д2) и высокими физико-механическими свойствами эпоксидных полимеррастворов путем использования синтезированных галогенсодержащих антипиренов в 40-50%-ном растворе N,N – диметил – 2,4,6 – триброманилина;
- установлено, что плазмохимическая обработка тонкодисперсных минеральных наполнителей повышает прочность слабогорючих химически стойких эпоксидных полимеррастворов на 20-25%;
- разработаны составы слабогорючих химически стойких эпоксидных полимеррастворов, используемых для ремонта строительных конструкций, с прочностью при растяжении, изгибе и сжатии более 35, 69 и 157 МПа соответственно;
- разработаны технологии получения и применения слабогорючих химически стойких эпоксидных полимеррастворов, содержащих минеральные наполнители, обработанные в плазмохимическом реакторе.
Внедрение результатов исследования.
Опытно-промышленная и промышленная апробация разработанных слабогорючих химически стойких эпоксидных полимеррастворов осуществлена предприятием ООО «Пилот» при защите от коррозии бетонного основания производственно-торгового и складского комплекса на площади 3840 м2. Экономических эффект от внедрения разработанных эпоксидных полимеррастворов составил 224640 руб.
Апробация работы.
Основные положения диссертационной работы докладывались на Международной конференции «Биосферно-совместимые технологии в развитии регионов» (г. Курск, 2011г.) и 15-й Международной межвузовской научно-практической конференции молодых ученых, докторантов и аспирантов «Строительство-формирование среды жизнедеятельности» (г. Москва, МГСУ, 2012г.).
На защиту выносятся:
- обоснование возможности получения эффективных слабогорючих химически стойких эпоксидных полимеррастворов для ремонта и реконструкции строительных конструкций;
- зависимости термических свойств и показателей пожарной опасности эпоксидных полимеррастворов от химической природы и содержания тонкодисперсных минеральныхнаполнителей и галогенсодержащих антипиренов;
- влияние плазмохимической обработки тонкодисперсных минеральных наполнителей и железооксидных пигментов на физико-механические свойства эпоксидных полимеррастворов;
- зависимости эксплуатационных свойств и химической стойкости разработанных эпоксидных полимеррастворов от содержания тонкодисперсных минеральных наполнителей и хлорбромсодержащих антипиренов;
- технологииполучения и применения слабогорючих химически стойких эпоксидных полимеррастворов с повышенными эксплуатационными характеристиками;
- результаты опытно-промышленного и промышленного внедрения, технико-экономические показатели разработанных эпоксидных полимеррастворов.
Структура и объем работы.
Диссертационная работа состоит из введения, 5 глав, общих выводов, списка использованной литературы, включающего 175 наименований и 3 приложений. Работа изложена на 155 страницах печатного текста и включает 43 рисунка, 24 таблицы.
СОДЕРЖАНИЕ РАБОТЫ
Одним из недостатков строительных конструкций, подвергающихся коррозионному воздействию, является отсутствие надежных и долговечных защитных покрытий. Покрытия на основе эпоксидных олигомеров технологичны, обладают высокой адгезией к различным подложкам, прочностью, водонепроницаемостью и химической стойкостью при повышенных температурах. Рациональное применение эпоксидных покрытий позволяет на 40…50% снизить потери от коррозии, повысить эксплуатационную надежность и долговечность строительных конструкций. Применение эпоксидных монолитных покрытий вместо традиционных облицовок, выполненных из штучных кислотоупорных материалов на химически стойких связующих по непроницаемому подслою, позволяет в 2…5 раз повысить производительность труда при одновременном снижении в 1,5…2 раза стоимости покрытия. Вместе с тем эпоксидные покрытия относятся к горючим материалам и обладают недостаточной прочностью.
Известно, что для снижения горючести эпоксидных полимеррастворов в исходные композиции дополнительно вводят галогенсодержащие антипирены в сочетании с Sb2O3, которые ингибируют радикальные цепные процессы в пламени и снижают выход горючих летучих продуктов пиролиза. Для повышения прочности таких композитов необходимо обеспечить более сильное взаимодействие полимерной матрицы и минерального наполнителя. На основании анализа научно-технической литературы была сформулирована научная гипотеза диссертационной работы, состоящая в том, что повышение прочности эпоксидных полимеррастворов может быть достигнуто в результате плазмохимической обработки минеральных наполнителей. Плазмохимическая обработка минеральных наполнителей позволяет эффективно применять управляемые нанопроцессы при производстве строительных материалов. В поле неравновесной низкотемпературной плазмы вещества претерпевают сложные физико-химические превращения, позволяющие придавать строительным материалам новые свойства и повышать их эффективность. Под действием плазмы на поверхности наполнителей должно образовываться большое количество активных радикалов, обладающих высокой реакционной способностью, что значительно улучшит взаимодействие полимерной матрицы и наполнителя.
К преимуществам плазмохимической обработки относится безопасность и низкая энергоемкость установок, возможность гибкого включения и регулирования их параметров. При получении низкотемпературной неравновесной плазмы в работе использован принцип вихревого движения газовой среды для создания оптимальных условий зажигания газоразрядной плазмы.
Для доказательства рабочей гипотезы в работе были проведены системные исследования по изучению влияния содержания и химической природы минеральных наполнителей и галогенсодержащих антипиренов, а также плазмохимической обработки наполнителей и пигментов на эксплуатационные, термические и пожароопасные свойства эпоксидных полимеррастворов.
При разработке слабогорючих химически стойких полимеррастворов применяли эпоксидные смолы марок ЭД-20, ЭД-22 (ГОСТ 10587-84) и аминные отвердители. Для повышения упруго-эластичных характеристик эпоксидных композиций использовали бутадиен-нитрильные каучуки марок СКН-18-1А, СКН-26-1А(ТУ 38.303-01-41-92) или низкомолекулярный полибутадиен СКДН-Н (ТУ 38.103515-82). В качестве антипиренов использовали промышленные и синтезированные галогенсодержащие соединения. Обработку тонкодисперсных минеральных наполнителей проводили в плазмохимическом реакторе, конструкции МФТИ.
Термический анализ наполнителей, бромхлорсодержащих антипиренов и эпоксидных композиций на воздухе и в токе азота проводили термогравиметрическим методом с помощью автоматизированной модульной термоаналитической системы «DuPont-9900» при скорости нагрева 10 и 20оС/мин. Кислородный индекс (КИ), коэффициент дымообразования (Dm) в режиме пиролиза и пламенного горения, температуры воспламенения (Тв) и самовоспламенения (Тсв), теплоту сгорания, критическую поверхностную плотность теплового потока воспламенения (gkp) отвержденных эпоксидных связующих и полимеррастворов на их основе определяли по ГОСТ 12.1.044-89. Предельную концентрацию кислорода (Спр) и скорость распространения пламени (Vрп) по горизонтальной поверхности при концентрации кислорода в окислителе 30-60% - исследовали по известной методике. Горючесть разработанных материалов определили по ГОСТ 30244-94. Обработку экспериментальных данных проводили методом наименьших квадратов с помощью программного комплекса MATLAB.
Полимеррастворы на основе эпоксидной смолы ЭД-20, относятся к горючим материалам с высокой дымообразующей способностью. Применение низкомолекулярных соединений, повышающих упругоэластические показатели полимеррастворов, увеличивает их воспламеняемость и дымообразующую способность. Так, например, КИ и Дm в режиме пиролиза и горения полимера ЭД-20, отвержденного ПЭПА, составляют 22 – 22,3%, 890 – 1060 и 950 – 1020 м2/кг соответственно. При введении в смолу ЭД-20 в качестве модификаторадиоктилфталата (15,4 мас.%) КИ и Dm в режиме пиролиза и горения равны 19,3%, 1350 и 890 м2/кг.
Минеральные тонкодисперсные наполнители не только повышают физико-механические свойства полимеров, но и влияют на термостойкость и пожарную опасность полимеррастворов.Влияние минеральных наполнителей на термостойкость эпоксидных полимеррастворов не однозначно. Так, например, маршаллит и Al(OH)3 незначительно повышают, а гетит и лимонит снижают термостойкость полимеррастворов (табл.1). Это обусловлено, по нашему мнению, как различной устойчивостью наполнителей к действию повышенных температур, так и различной концентрацией гидроксильных групп на их поверхности.
Таблица 1
Термостойкость эпоксидных полимеррастворов
Показатели | Минеральные наполнители | ||||
- | Гетит | Маршаллит | Al(OH)3 | Лимонит | |
Температура, оС - начала интенсивного разложения 10%-ной потери массы максимальной скорости разложения на
| 262 268 289 525 | 250 277 265 553 | 264 284 292 463 | 266 278 299 480 | 240 268 263 476 |
Максимальная скорость разложения, %/мин, на
| 14,7 2,9 | 5,4 2,1 | 6,3 8,8 | 8,8 2,0 | 6,8 4,5 |
Потеря массы при 700оС,% | 97,4 | 42,4 | 40,7 | 64,7 | 52,1 |
При небольшом содержании минеральных наполнителей до (40-45 мас.%) химическая природа наполнителей слабо влияет на пожарную опасность эпоксидных полимеррастворов (табл.2): КИ равен 19,8 – 22,3%, Тв – 280-310 0С, Тсв. – 480-520 0С, gкр. – 10,6-14,3 кВт/м2, а Dm в режиме пиролиза и горения составляет 730-840 и 360-500 м2/кг. Причем в режиме пиролиза Dm превышает коэффициент дымообразования в режиме горения более чем в 1,5 раза. Значительное снижение горючести и дымообразующей способности полимеррастворов наблюдается при содержании наполнителей более 50 мас.%. Причем наполнители, разлагающиеся в условиях горения полимерных материалов (Mg(OH)2 и Al(OH)3) с образованием негорючих газов (Н2О), превосходят по эффективности пламегасящего действия неразлагающиеся наполнители (рис.1).
С ростом степени наполнения исходной композиции до 61мас.% закономерно снижается пожарная опасность эпоксидных полимеррастворов:КИ возрастает с 19,3 до 29,9%, Тв – с 270 до 290...3200С, Тсв – с 470 до 490…5300С, а gкр. линейно повышается с 10,3 до 12,2…18,5 кВт/м2(рис.2). Dm в режиме пиролиза и пламенного горения снижается с 1350 и 890м2/кг до 460-570 и 200-310 м2/кг соответственно.
Для неразлагающихся тонкодисперсных минеральных наполнителей зависимость КИ эпоксидных полимеррастворов от содержания наполнителей (с) можно представить в виде уравнения: КИ=19,3+вca, где коэффициент в и а для андезита, мела и Al2O3 равны 0,9, 0,14, 0,05 и 0,39, 0,57; 0,74 соответственно. Для разлагающихся в условиях горения наполнителей КИ полимеррастворов равна: КИ=19,3+в(cosh(а*с)-1), где коэффициенты в и а для Al(OH)3 и Mg(OH)2 равны 0,597, 0,387 и 0,059, 0,069 соответственно.Следует отметить, что применение только минеральных наполнителей не позволяет перевести полимеррастворы из одной группы горючести в другую.
Рис.2 Зависимость критической поверхностной плотности теплового потока эпоксидных полимеррастворов от содержания минеральных наполнителей: 1-Al(OH)3; 2-Mg (OH)2; 3-CaCO3; 4-гетит; 5-MgO; 6-андезит. | Рис.1 Зависимость кислородного индекса эпоксидных полимеррастворов от содержания минеральных наполнителей: 1- Mg (OH)2; 2- Al(OH)3; 3-андезит; 4-гетит; 5- CaCO3; Al2O3. |
Одним из наиболее распространенных и эффективных методов снижения горючести эпоксидных полимеррастворов является использование аддитивных броморганических антипиренов. Это обусловлено, прежде всего, широким ассортиментом и относительно невысокой стоимостью промышленных марок бромсодержащих антипиренов. КИ промышленных марок броморганических антипиренов, как правило, превышает 90%, а теплота сгорания составляет 9,4…10,8 кДж/кг. Воспламеняемость эпоксидных полимеррастворов, содержащих 5,7 мас.% броморганических антипиренов и наполненных кварцевым песком (41 мас.%), снижается: КИ и спр возрастают с 21,6 и 29,4% до 27,2…28,9 и 36,1…39,6% соответственно, Тв уменьшается с 290-300 до 270…280оС, а Тсв практически не зависит от химического строения антипирена и составляет 460…480оС. Dm эпоксидных полимеррастворов в режиме пиролиза возрастает с 410 до 440…490 м2/кг, а в режиме пламенного горения увеличивается более чем в 1,5 раза с 570 до 890-990 м2/кг. ПричемDm в режиме горения превышает коэффициент дымообразования в режиме пиролиза более чем в 2 раза.
Таблица 2
Горючесть и дымообразующая способность эпоксидных полимеррастворов
Показатели | Минеральные наполнители | |||||||
– | мел | диабаз | гетит | кварцевый песок | андезит | Mg(OH)2 | Al(OH)3 | |
Температура, оС воспламенения самовоспламенения | 270 470 | 280 480 | 290 480 | 290 500 | 290 480 | 290 480 | 300 500 | 310 520 |
КИ, % | 19,3 | 19,8 | 20,4 | 21,5 | 21,6 | 21,8 | 22,1 | 22,3 |
gкр., кВт/м2 | 10,3 | 10,6 | 11,2 | 12,4 | 12,7 | 12,8 | 13,2 | 14,3 |
Dm, м2/кг, в режиме | ||||||||
- пиролиза | 1350 | 790 | 840 | 760 | 840 | 740 | 730 | 740 |
- горения | 890 | 390 | 440 | 500 | 540 | 450 | 360 | 360 |
Примечание: содержание минеральных наполнителей в полимеррастворе, модифицированном каучуком СКН-26-1А, равно 43,5 мас.%.
Химическое строение ароматических броморганических антипиренов аддитивного типа практически не влияет на горючесть эпоксидных полимеррастворов (табл.3). Основным фактором, определяющим их эффективность, является близость температур интенсивного разложения полимера ЭД-20 и бромсодержащего соединения. Механизм действия указанных антипиренов обусловлен как ингибированием радикальных цепных процессов в пламени, так и флегматизацией пламени продуктами разложения бромсодержащих антипиренов.
Таблица 3
Горючесть и дымообразующая способность эпоксидных полимеррастворов
Марка антипирена | Тв, оС | КИ,% | Dm,м2/кг, в режиме | |
пиролиза | горения | |||
– | 300 | 21,6 | 410 | 570 |
Гексобромбензол | 280 | 26,8 | 440 | 1000 |
Декабромдифенилоксид | 270 | 28,2 | 460 | 900 |
2,4,6-триброманилин | 300 | 28 | 480 | 820 |
N(2,4,6-триброфенил) милеинимид | 290 | 28,5 | 430 | 830 |
2,4,6-трибромфенол | 290 | 28,7 | 550 | 820 |
Пентабромфенол | 280 | 28,4 | 460 | 860 |
Тетрабромфталевый ангедрид | 260 | 28,1 | 490 | 900 |
Примечание: содержание антипирена в полимеррастворе, модифицированном каучуком СКН-26-1А, равно 5,7 мас.%.
С ростом содержания броморганических антипиренов, в эпоксидномсвязующем закономерно уменьшается воспламеняемость композиций. Так, например, с увеличением содержания тетрабромдиана до 9,8 мас.% Тв полимеррастворов снижается с 300 до 280оС, Тсв повышается с 460…470 до 480…490оС, а КИ увеличивается с 21,6 до 29,2%. Dmв режиме пиролиза практически не зависит от содержания антипиренов и составляет 420…440 м2/кг, а в режиме пламенного горения возрастает с 750 до 990 м2/кг. Зависимость КИ эпоксидных полимеррастворов, модифицированных каучуков СКН-26-1А, от содержания броморганических антипиренов (с) можно представить в виде уравнения: КИ=21,6+в(1-0,5с)а, где коэффициенты а и в для хлоргидринового эфира пентабромфенола, гексабромбензола, пентабромфенола и N(2,4,6 - трибромфенил)малеинилида равны 0,87, 0,79, 0,61, 0,60 и 8,20, 7,56, 7,51, 6,84 соответственно.
Броморганические антипирены аддитивного типа значительно превосходят по эффективности пламягасящего действия реакционноспособные соединения: для получения эпоксидных полимеррастворов с КИ = 27% концентрация брома в композиции при использовании пентабромфенола составляет 8,3%, а при применении бромсодержащего олигомера марки УП-631 – 20%. Причем для аддитивных и реакционноспособных бромсодержащих антипиренов наблюдается линейная зависимость КИ полимеррастворов от концентрации брома в композиции. Применение промышленных марок броморганических антипиренов позволяет получать слабогорючие (Г1)эпоксидные полимеррастворы с КИ = 30…33% и высокими прочностными показателями при содержании антипиренов8…10 мас.%.
Среди синтезированных бромхлорорганических антипиренов наибольшей термической стабильностью обладает Редант 1-2, а минимальной скоростью разложения– Редант 1. Причем ТГ-кривые разложения антипирена Редант 1 наиболее полно соответствуют характеру разложения эпоксидного полимера ЭД-20(рис.3,4). Этим и объясняется его более высокая эффективность пламягасящего действия по сравнению с другими бромсодержащими антипиренами. В тоже время полимеррастворы, модифицированные антипиреном Редант 1, имеют более высокую теплотворную способность (удельная теплота сгорания композиции, содержащей 8,6 мас. % Редант 1 равна 31570 кДж/кг) по сравнению с 29030 и 29900 кДж/кг для полимеррастворов, модифицированных Редант 2 и Редант 1-2 (табл.4). Массовая скорость выгорания полимеррастворов, модифицированных 8,6 мас.% Редант 1 и Редант 2-1, равна соответственно 32,17 и 30,59 г/(м2с) при плотности теплового потока 10,58 кВт/м2. При этом концентрация хлора (19,9 – 29,8%) и брома (33,59 – 56,07%) в антипирене Редант 1 зависит от степени бромирования 1,1-дихлор-2,2-бис (4-хлорфенил) этилена. Оптимальной концентрацией синтезированных бромхлорсодержащих антипиренов для получения слабогорючих эпоксидных полимеррастворах, как и в случае с промышленными ароматическими бромсодержащими антипиренами, является 8-10 мас.%.
Рис.3 ТГ – кривые бромсодержащих антипи-ренов: I- РедантI; 2- РедантI-2; 3 – Редант 2-I; 4 – Редант 3; 5- Редант 2. | Рис.4 ДТГ – кривые бромсодержащих антипи-ренов: I- Редант 1; 2- Редант 1-2; 3 – Редант 2-1; 4 – Редант 3; 5- Редант 2. |
Состав слабогорючих (Г1) эпоксидно-каучуковых композиций, содержащих Редант 1 в качестве антипирена, приведен ниже (мас.%):
эпоксидная диановая смола - 26,9 – 33,7
аминный отвердитель - 2,5 – 3,9
смесь бутадиен-нитрильного каучука
и трихлордифенила в соотношении 1:1 - 10,1 – 15,3
продукт бромирования
1,1-дихлор-2,2-ди (4-хлорфенил) этилена - 5,2 – 8,6
трехоксид сурьмы - 1,6 – 2,9
минеральный наполнитель - 39,9 – 46,7
Следует отметить, что Редант 1 обеспечивает получение эпоксидных полимеррастворов с более высокими физико-механическими свойствами (табл.4).
Горючесть полимеррастворов зависит от равномерного распределения антипирена в полимерной матрице. Учитывая, что все исследованные антипирены являются порошкообразными кристаллическими или аморфными веществами, представлялось целесообразным использовать их в виде раствора в N,N-диметил – 2,4,6-триброманилине, который хорошо совмещается с олигомером ЭД-20 и повышает степень отверждения эпоксидного полимера. В результате проведенных исследований установлено, что с ростом концентрации Редант 1 в растворе N,N-диметил–2,4,6-триброманилина с 5 до 50% КИ возрастает с 25,8 до 30,1%, массовая скорость выгорания при плотности теплого потока 10,58 кВт/м2 уменьшается с 29,1 до 23,4 г/(м2с.), а теплота сгорания линейно снижается с 34400 до 30150 кДж/кг(рис.5,6).
Рис.5 Зависимость горючести эпоксидныхкомпози-ций от концентрации Редант 1 в N,N – диметил - 2,4,6 – триброманилине: 1,2 – кислородный индекс;3 - теплота сгорания;4 – массовая скорость горения при плотности теплового потока 10,58 кВт/м2;1- содержание антипирена в композиции 8,6 масс. %; 2,3,4 – содержание антипирена в композиции составляет 4,5 масс. % | Рис.6 Зависимость дымообразующей способности эпоксидных полимер-растворов от концентрации Редант 1 в растворе NN – диметил – 2,4,6 – триброманилине: 1,2 – в режиме пиролиза ; 1', 2' – в режиме горения; 1, 1'- содержание антипирена – 4,1 масс.%; 2,2' – содержание антипирена – 7,9 масс. % |
В то же время максимальные значения Dm полимеррастворов реализуются при 20-30%-ной концентрации Редант 1 в N,N-диметил-2,4,6-триброманилине. При этом с ростом содержания антипиренов серии Редант дымообразующая способность полимеррастворов в режиме пиролиза снижается, а в режиме пламенного горения возрастает. Физико-механические свойства полимеррастворов, модифицированных раствором Редант 1 в N,N-диметил-2,4,6-триброманилине зависят от концентрации антипирена (табл.5), что обусловлено изменением степени превращения олигомера ЭД-20(рис.7).
Таким образом, использование синтезированных галогенсодержащих антипиренов в растворе N,N-диметил-2,4,6-триброманилина позволяет получать слабогорючие (Г-1), не распространяющие пламя по поверхности строительных материалов (РП1) с умеренной дымообразующей способностью эпоксидные полимер-растворы, обладающие высокими физико-механическими свойствами.
Таблица 4
Физико-механические свойства, термостойкость и пожарная опасность эпоксидных полимеррастворов, наполненных маршаллитом (47,2 мас.%)
Показатели | Марка антипирена | |||
Редант 1-2 | Редант 2-1 | Редант 2 | Редант 1 | |
Концентрация галогена в антипирене, % брома хлора | 66,0 15,5 | 44,0 26,5 | 63,0 19,0 | 45,5 22,5 |
Разрушающее напряжение при растяжении, МПа | 13,2 | 23,9 | 27,7 | 29,45 |
Относительное удлинение при разрыве,% | 1,0 | 1,58 | 1,23 | 1,95 |
Кислородный индекс, % | 32,3 | 33,2 | 30,5 | 33,7 |
Температура, 0С | ||||
начала разложения | 284 | 252 | 253 | 264 |
10%-ной потери массы | 309 | 311 | 307 | 298 |
максимальной скорости разложения | 317 | 322 | 322 | 333 |
Скорости разложения, %/ мин., на | ||||
1 стадии | 6,71 | 6,53 | 6,16 | 8,15 |
2 стадии | 7,23 | 7,55 | 7,52 | 7,19 |
Коксовый остаток при 600 0С, % | 43,3 | 46,7 | 42,6 | 41,3 |
Теплота сгорания, кДж/кг | 29900 | - | 29030 | 31570 |
Дм,м2/кг, в режиме: пиролиза горения | ||||
770 650 | 870 730 | 760 690 | 850 630 |
Примечание: содержание антипирена равно 8,6 мас.%.
Рис.7 Зависимость разрушающего напряжения при растяжении (1), относительного удлинения при разрыве (2) и модуля упругости при растяжении (3) эпоксидных композиций, содержащих в качестве антипирена 4,6 масс % раствора Редант 1 в NN – диметил – 2,4,6 – триброманилине.
Таблица 5
Физико-механические свойства эпоксидных полимеррастворов, содержащих раствор Редант1 в N,N-диметил-2,4,6-триброманилине
Показатели | Концентрация антипирена в N,N-диметил-2,4,6-триброманилине | ||||
10 | 20 | 30 | 40 | 50 | |
Разрушающее напряжение при растяжении, МПа | 25,1 27,3 | 21,6 38,0 | 23,7 21,5 | 28,0 25,5 | 29,1 - |
Относительное удлинение при разрыве, % | 1,58 1,81 | 1,54 1,40 | 1,46 1,41 | 1,95 1,65 | 1,8 - |
Модуль упругости при растяжении, МПа | 3350 3510 | 3676 3920 | 3084 3186 | 3371 3168 | 3543 - |
Примечание: в числителе содержание антипирена 4,5 мас.%., в знаменателе – 8,6 мас.%.
При обработке минеральных наполнителей (маршаллит, диабаз, кварцевый песок) неравновесной низкотемпературной плазмой в плазмохимическом реакторе прочность эпоксидных полимеррастворов повышается на 20-25%:
- разрушающее напряжение, МПа, при
растяжении -35,6 – 36,4;
изгибе - 69,2 – 75,5;
сжатии - 157,9 – 160,1;
- твердость по Бринеллю, МПа - 41,5 – 43,0;
- удельная ударная вязкость, кДж/м2 - 6,2 – 6,7;
- водопоглощение за 30 суток, % - 0,07 – 0,09;
- адгезионная прочность, МПа, к
бетону марки 300 - 3,0
металлу - 6,5 – 6,8
Аналогичный результат получен и при использовании смешанного железооксидного пигмента, обработанного в плазмохимическом реакторе. По материалам проведенных исследований оформлены 2 заявки на потент.
Высокая прочность разработанных эпоксидных композиций с пониженной пожарной опасностью, наполненных диабазовой и кварцевой мукой, реализуется при содержании наполнителей 52 – 54 мас.%. Максимальная усадка полимеррастворов происходит в первые 24 часа отверждения связующего изавершается на 30 сутки. Причем объемная усадка эпоксидных композиций не превышает 0,4%. Повышение степени наполнения исследованных эпоксидных композиций кварцевой мукой до 58 мас.% уменьшает усадку до 0,24%. Эксплуатационное свойство разработанных эпоксидных покрытий приведены ниже:
адгезионная прочностьпри
отрыве, МПа, к
бетону М250 - 2,4 – 2,5;
бетону М300 - 2,9 – 3,0;
стали ст.3 - 6,9 – 7,1;
внутренние напряжения, МПа:
без эластичного подслоя - 3,3 – 3,4;
с эластичным подслоем - 2,3 – 2,4;
ударная стойкость, кДж/см2:
без эластичного подслоя - 5,2 – 5,3
с эластичным подслоем - 9,0 – 9,1
Интенсивное набухание исследованных полимеррастворов происходит в первые 3 месяца эксплуатации образцов и составляет 0,22…0,39 мас.% в зависимости от химической природы агрессивной среды. В дальнейшем изменение массы образцов практически не происходит и составляет 0,33…0,52%. Наибольшее увеличение массы образцов происходит в воде (0,69-0,7%), уксусной (0,5…0,51%) и азотной (0,42…0,45%) кислотах 10%-ой концентрации. Значительно меньше изменение массы наблюдается всерной (0,4…0,42%) и соляной (0,38%) кислотах. Для воды впервые 3…4 месяца наблюдается более медленное увеличение массы образцов: через 1 месяц – 0,08…0,09%, а через 3 месяца – 0,25…0,28%.
Изменение прочности эпоксидных полимеррастворов после их экспозиции в агрессивных средах показало, что в течении первых 6 месяцев наблюдается небольшое уменьшение Кст до 0,95…0,99 и в дальнейшем остается практически постоянным. Более высокая химическая стойкость эпоксидных композиций, наполненных кварцевой мукой, обусловлено более высоким содержанием SiO2 в наполнителе. При исследовании диффузионной проницательности и химической стойкости эпоксидных композиций установлено, что снижение прочности при воздействии кислот становится ограниченным и затухающим во времени. Расчет показывает, что срок службы покрытия на основе разработанных эпоксидных композиций зависит от толщины покрытия, вида и концентрации агрессивной среды. Для покрытия толщиной 3 мм срок службы в условиях постоянного воздействия агрессивных сред составил: для 25% раствора серной кислоты, 50% раствора гидроксида натрия и 10% раствора хлорида натрия – более 20 лет;для 10% растворов азотной и уксусной кислот и 30% раствора хлорида натрия – 18 лет; для 30% раствора уксусной кислоты и 15% раствора азотной кислоты – 15 лет.
В диссертационной работе разработаны рекомендации по производству составов для ремонта строительных конструкций и устройству химически стойких слабогорючих монолитных покрытий на основе высоконаполненных эпоксидных полимеррастворов, включающие в себя требования к исходным материалам, условия плазмохимической обработки наполнителей, оптимизацию составов полимеррастворов, технологию их изготовления и контроль качества монолитных покрытий.
Опытно-промышленная и промышленная апробация разработанных высоконаполненных эпоксидных полимеррастворов осуществлена на предприятии ООО «Пилот»: выполнена защита от коррозии бетонного основания производственно-торгового и складского комплекса, расположенного в Мытищинском районе, Московской области, монолитным эпоксидным покрытием с пониженной горючестью (Г1) на основе эпоксидных смол толщиной 3 мм, на площади 3840 м2. Опыт эксплуатации покрытий подтвердил их высокую эффективность. Экономический эффект от внедрения разработанных эпоксидных покрытий составил 224640 руб.
ОСНОВНЫЕ ВЫВОДЫ
- Обоснована возможность снижения горючести и повышения эксплуатационных показателей слабогорючих химически стойких эпоксидных полимеррастворов, используемых для ремонта и реконструкции строительных конструкций, за счет применения галогенсодержащих антипиренов и плазмохимической обработки тонкодисперсных минеральных наполнителей.
- Разработаны технологии приготовления и применения высоконаполненных эпоксидных полимеррастворов для ремонта и реконструкции строительных конструкций, выключающих эпоксидную диановую смолу, аминный отвердитель, смесью бутадиен-нитрильного каучука и трихлордифенила, продукты бромирования1,1-дихлор-2,2-ди (4-хлорфенил)этилена, трехоксид сурьмы и минеральные наполнители, обработанные неравновесной низкотемпературной плазмой.
- Разработаны составы слабогорючих химически стойких эпоксидных полимеррастворов, используемых для ремонта строительных конструкций, с прочностью при растяжении, изгибе и сжатии более 35, 69 и 157 МПа соответственно.
- Установлены зависимости термических и прочностных показателей, горючести и дымообразующей способности эпоксидных полимеррастворов от содержания и химической природы промышленных и синтезированных галогенсодержащих антипиренов.
- Получены двухфакторные математические зависимости прочностных характеристик и показателей пожарной опасности эпоксидных полимеррастворов от содержания минеральных наполнителей и галогенсодержащих антипиренов.
- Методами ТГА, ДТА и ДСК установлено, что галогеносодержащие антипирены, которые наиболее полно соответствующие характеру разложения эпоксидного полимера ЭД-20 обладают более высокой эффективностью пламягасящего действия.
- Установлено, что оптимальным содержанием галогенсодержащих антипиренов различной химической природы при получения слабогорючих химически стойких эпоксидных полимеррастворов, является 8-10 мас.%.
- Показана возможность получения слабогорючих (Г1) с умеренной дымообразующей способностью (Д2) и высокими физико-механическими свойствами эпоксидные полимеррастворы путем использования синтезированных галогенсодержащих антипиренов в 40-50%-ном растворе N,N – диметил – 2,4,6 – триброманилина;
- Установлено, что плазмохимическая обработка тонкодисперсных минеральных наполнителей и железооксидных пигментов повышает прочность слабогорючих химически стойких эпоксидных полимеррастворов на 20-25%.
- Опытно-промышленная и промышленная апробация разработанных слабогорючих химически стойких эпоксидных полимеррастворов осуществлена при защите бетонного основания производственно-торгового и складского комплекса в Московской обл. на площади 3840 м2.Экономический эффект от применения слабогорючих химически стойких эпоксидных полимеррастворов превысил 224 тыс. руб.
Основные результатыдиссертационной работы опубликованы в следующих работах:
- Ушков В.А., Григорьева Л.С., Абрамов В.В. Горючесть эпоксидных полимеров.// Вестник МГСУ. 2011. - Т.2. - №1. - С. 352-356.
- Ушков В.А., Абрамов В.В., Григорьева Л.С., Кирьянова Л.В. Термостойкость и пожарная опасность эпоксидных полимеррастворов.// Строительные материалы. 2011. - №12. - С. 68-71.
- Ушков В.А., Абрамов В.В., Григорьева Л.С. Эксплуатационные свойства эпоксидных полимеррастворов.// Известия Юго-Западного госуниверситета. 2011. - №5-2. – С. 217-220.
- Абрамов В.В. Прочность и химическая стойкость слабогорючих эпоксидных полимеррастворов.// Строительство-формирование среды жизнедеятельности: научные труды 15 Международной межвузовской научно-практической конференции молодых ученых, докторантов и аспирантов. – М.: МГСУ, Изд-во АСВ. 2012. - С. 382-385.