WWW.DISUS.RU

БЕСПЛАТНАЯ НАУЧНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 

Pages:     || 2 | 3 | 4 | 5 |   ...   | 14 |
-- [ Страница 1 ] --

БИБЛИОГРАФИЯ = Грин Б. Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории: Пер. с англ. / Общ. ред. В. О. Малышенко. — М.: Едиториал УРСС, 2004. — 288 с.

Грин Б. Элегантная Вселенная. — М.: Едиториал УРСС, 2004. — 288 с.

ЭЛЕКТРОННОЕ ОГЛАВЛЕНИЕ

Выдержки из рецензий на книгу Брайана Грина

«Элегантная Вселенная»

Грин затрагивает потрясающее количество тем, излагая их простым и ясным языком без математических выкладок и технических подробностей... Это образец научного повествования... Трудно не заразиться хоть отчасти его энтузиазмом и возбуждением.

The Philadelphia Inquirer

В высшей степени захватывающая книга... Грандиозный успех... Грин изложил теорию струн доступно и без формул; объяснил, почему струны так воодушевляют их приверженцев. Заслуга Грина в том, что мы почувствовали себя комфортно в холодно-абстрактном мире струн, и он убедил нас, что этот мир нужно принять серьезно.

Sunday Telegraph (London)

[Грин] пишет ясно и энергично, талантливо находя живые, часто веселые образы для абстрактных научных принципов. [Он] пишет со страстью человека, горящего желанием доказать справедливость теории суперструн, потому что он вдохновлен ее красотой.

Chicago Tribune

Содержательная и важная книга... Элегантная Вселенная рассказывает... о теории струн с ясностью и шармом. Это и личный рассказ, и история о грандиозном интеллектуальном движении.

Scientific American

Теория струн — самая захватывающая идея со времен, когда Стивен Хокинг заглянул внутрь черных дыр. [Грин] излагает ее так, что понять это может каждый.

San Francisco Chronicle

Грин проделал великолепную работу, изложив идею теории струн понятным языком. Это поразительно ясный и хорошо написанный рассказ об удивительных следствиях для структуры пространства--времени, вытекающих из теории.

New Scientist

Замечательная книга. Грин привнес захватывающую идею научных изысканий в реальную жизнь.

Nature

Книга Брайана Грина — самая последняя из нанизанных на струну (простите!), которую изначально заставил звучать Стивен Хокинг, и к тому же самая лучшая.

London Morning Star

Метафоры Грина часто придают красоту и силу идеям, непостижимым другими способами. Элегантная Вселенная — стоящее чтение... Эйнштейн бы одобрил.

Discover Magazine

Брайан Грин сделал жутко сложную теорию струн доступной каждому. Он обладает поразительным талантом использовать обыденные образы для иллюстрации того, что может происходить в размерностях, выходящих за рамки человеческого восприятия.

Publishers Weekly

Со времен необычайного успеха Краткой истории времени ни одна научная книга не привлекала такого внимания.

Sunday Times (London)

Брайан Грин заманивает читателя на передний край физики своей обворожительной прозой.

The Christian Science Monitor

Это — хорошо написанный отчет с переднего фронта физики и астрономии.

American Scientist

Грин обладает удивительным даром объяснять самые передовые научные идеи так, что каждый может оценить его свежий и проницательный взгляд.

Astronomy Magazine

Элегантная Вселенная — выдающаяся книга, ставшая классикой научного объяснения. Со временем теория [струн] может повлиять на само наше понимание красоты.

The New York Times

Грин жаждет поделиться с широкой читательской аудиторией своим пониманием теории струн и выявить ее сильные стороны. И он действительно достигает этого, освещая историю и проблемы современной физики.

Science News

Невозможно оторваться от чтения Элегантной Вселенной. Грин грозится сделать для теории струн то, что Стивен Хокинг сделал для черных дыр.

New York

[Грин] пишет с поэтическим красноречием и вкусом. Достойна восхищения его работа по переводу чисто математических усилий

в наглядные образы.

The Washington Post Book World

Излагает новые открытия одно за другим... Продолжая лучшие традиции ученых-физиков, пишущих для широкой аудитории, Элегантная Вселенная устанавливает стандарт, который будет трудно превзойти.

The New York Times Book Review

Brian Greene

THE ELEGANT UNIVERSE

Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory

Vintage Books

A Division of Random House, Inc.

New York

Брайан ГРИН

ЭЛЕГАНТНАЯ ВСЕЛЕННАЯ

Суперструны, скрытые размерности и поиски окончательной теории

Перевод с английского

под общим руководством

академика РАН

С.С.Герштейна

Научный редактор

канд. физ.-мат. наук

В.О.Малышенко

Москва 2ОО4

ББК 22.3о, 22.382

Настоящее издание осуществлено при финансовой поддержке Российского фонда фундаментальных

исследований (проект № 01-02-30054)

Грин Брайан

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории:

Пер. с англ. / Общ. ред. В. О. Малышенко. — М.: Едиториал УРСС, 2004. — 288 с.

ISBN 5-354-00161-7

Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы—Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мульти--вселенные — вот далеко не полный перечень обсуждаемых вопросов.

Используя ясные аналогии, автор переводит сложные идеи современной физики и математики на образы, понятные всем и каждому. Брайан Грин срывает завесу таинства с теории струн, чтобы представить миру 11-мерную Вселенную, в которой ткань пространства рвется и восстанавливается, а вся материя порождена вибрациями микроскопических струн.

Книга вызовет несомненный интерес как у специалистов естественно-научных дисциплин, так и у широкого круга читателей.

Редакторы: Александр Берков, Виктория Малышенко

Издательство благодарит Анастасию Волович и Кирилла Сарайкина за ценные замечания, сделанные по прочтении перевода.

Издательство «Едиториал УРСС». 117312, г. Москва, пр-т 60-летия Октября, 9. Лицензия ИД №05175 от 25.06.2001 г. Подписано к печати 24.12.2003 г. Формат 70x100/16. Тираж 3000 экз. Печ. л. 18. Зак. № Э-23

Отпечатано в типографии ГУП ПИК «Идел-Пресс». 420066, г. Казань, ул. Декабристов, 2.

ISBN 5-354-00161-7 © 1999 by Brian R.Greene. All rights reserved
© Перевод на русский язык: Едиториал УРСС, 2004
© Оригинал-макет, оформление: Едиториал УРСС, 2004

Все права защищены. Никакая часть настоящей книги не может быть воспроизведена или передана в какой бы то ни было форме и какими бы то ни было средствами, будь то электронные или механические, включая фотокопирование и запись на магнитный носитель, если на то нет письменного разрешения владельцев.

С любовью и благодарностью

моей матери

и в память о моем отце

Предисловие

Последние тридцать лет своей жизни Альберт Эйнштейн провел в неустанном поиске так называемой единой теории поля — теории, которая смогла бы объединить все взаимодействия, существующие в природе, в единую, всеобъемлющую и непротиворечивую систему. Мотив, лежащий в основе его поиска, не был связан напрямую с тем, что мы обычно подразумеваем под научной деятельностью, например, с попыткой объяснить те или иные конкретные экспериментальные данные. Им двигала страстная вера в то, что достигнув глубочайшего понимания мироздания, мы сможем проникнуть в его самую сокровенную тайну — простоту и мощь принципов, лежащих в его основе. Эйнштейн хотел раскрыть устройство Вселенной с доселе неведомой ясностью, заставив нас застыть в благоговейном изумлении перед ее совершенной красотой и элегантностью.

Эйнштейн не смог осуществить свою мечту. Во многом из-за того, что путь закрывали объективные обстоятельства: в его время некоторые важные свойства материи и взаимодействий либо оставались неизвестными, либо, в лучшем случае, были не до конца осознаны. Однако в течение последнего полувека физики все новых и новых поколений, добиваясь успехов и терпя неудачи, временами попадая в тупики, продолжали, основываясь на открытиях своих предшественников, добиваться все более полного понимания принципов устройства мироздания. И вот теперь, спустя много лет после того, как Эйнштейн объявил о своем походе на поиски единой теории, из которого он вернулся с пустыми руками, физики считают, что они смогли наконец выработать теорию, связывающую все эти догадки в единое целое, — единую теорию, которая в принципе способна объяснить все явления. Эта теория, теория суперструн, и является предметом данной книги.

Я написал Элегантную Вселенную в попытке описать замечательные открытия, родившиеся на переднем крае физических исследований, и сделать их доступными широкому кругу читателей, особенно тем из них, кто не имеет достаточной подготовки в физике и математике. Читая в течение последних нескольких лет публичные лекции по теории суперструн, я стал свидетелем растущего стремления понять, что говорят современные исследования о фундаментальных законах мироздания, почему эти законы ведут к радикальному изменению наших представлений о Вселенной, какие проблемы остались нерешенными в нашем непрерывном поиске окончательной теории. Я надеюсь, что мои рассказы об основных достижениях, которых добились физики со времен Эйнштейна и Гейзенберга, и описание бурного прогресса, свидетелями которого мы стали на рубеже столетий, обогатят ваши знания и удовлетворят ваше любопытство.

Я также рассчитываю, что Элегантная Вселенная будет интересна читателям, имеющим определенную научную подготовку. Я надеюсь, что эта книга поможет студентам, изучающим естественные науки, и их преподавателям в понимании некоторых основополагающих положений современной физики, таких как специальная и общая теория относительности и квантовая механика, и, в то же время, сможет заразить их энтузиазмом исследователей, ведущих поиск долгожданной единой теории. Любителям научно--популярной литературы я попытался объяснить многие из удивительных достижений в понимании основ мироздания, которого ученые добились в последнем десятилетии. Что касается моих коллег, работающих в других научных дисциплинах, я надеюсь, что эта книга даст им правдивое и взвешенное объяснение того, почему специалисты по теории струн испытывают такой энтузиазм в отно-

Предисловие 9

шении прогресса в поиске окончательной теории мироздания.

Теория суперструн забрасывает широкий невод в океан мироздания. Это обширная и глубокая теория, охватывающая многие важнейшие положения, играющие центральную роль в современной физике. Она объединяет законы макромира и микромира, действие которых распространяется в самые дальние дали космического пространства и на мельчайшие частицы материи; поэтому рассказать об этой теории можно по-разному. Я выбрал подход, позволяющий проследить эволюцию наших представлений о пространстве и времени. Мне кажется, что такой подход, показывающий, как возникали и развивались новые, удивительные представления, является особенно увлекательным. Эйнштейн показал миру, что пространство и время могут вести себя совершенно необычным образом. В наши дни исследования, ведущиеся на переднем крае науки, позволили применить открытия Эйнштейна к идее квантовой вселенной, имеющей многочисленные скрытые измерения. Эти измерения свернуты в крохотные петли, спрятанные в ткани мироздания, а их причудливая геометрия может содержать ответ на некоторые из самых глубоких вопросов, когда-либо ставившихся учеными. Хотя некоторые из новых понятий являются трудно уловимыми, мы увидим, что их суть можно понять с помощью вполне осязаемых аналогий. А будучи понятыми, эти идеи дадут совершенно иной, поразительный взгляд на нашу Вселенную.

На всем протяжении книги я старался оставаться как можно ближе к науке, пытаясь в то же время дать читателю — часто через аналогию и метафору — интуитивное понимание того, как ученые выработали современные представления о Вселенной. Хотя я старался избегать специальной терминологии и уравнений, радикально новый характер излагаемых понятий может побудить читателя иногда сделать паузу и обдумать ту или иную главу либо объяснение, чтобы дальнейший материал был ему понятен. Некоторые главы IV части (посвященные самым последним достижениям) являются несколько более абстрактными, чем остальная часть

книги. Я позаботился о том, чтобы вовремя предупредить читателя об этом, и организовал текст так, чтобы такие главы могли быть прочитаны поверхностно или пропущены с минимальным ущербом для понимания материала, содержащегося в книге. Я включил в книгу словарь научных терминов, который позволит читателю быстро вспомнить идеи и понятия, введенные в основном тексте. Тот, кому эта книга попала в руки случайно, возможно захочет пропустить примечания, приведенные в конце; усердный читатель найдет в примечаниях более подробное описание вопросов, углубленное разъяснение идей, которые были упрощены в тексте книги, а также некоторые технические выкладки для тех, кто имеет достаточную математическую подготовку.

Я хотел бы выразить благодарность всем, кто оказал мне помощь в работе над книгой. Дэвид Стейнхардт с величайшим вниманием прочел рукопись и щедро одарил меня глубокими замечаниям и неоценимой поддержкой. Дэвид Моррисон, Кен Вайнберг, Рафаэль Каспер, Николас Болес, Стивен Карлип, Артур Гринспун, Дэвид Мермин, Майкл Попович и Шани Оффен внимательно ознакомились с рукописью и сделали массу подробных замечаний и предложений, которые позволили существенно улучшить книгу. Кроме того, вся рукопись или отдельные ее главы были прочитаны Полом Аспинуоллом, Персисом Дреллом, Майклом Даффом, Куртом Готтфридом, Джошуа Грини, Тедди Джефферсоном, Марком Камионковским, Яковом Кантером, Андрашем Ковачем, Дэвидом Ли, Меган Мак-Эвен, Нари Мистри, Хасаном Падамси, Роненом Плессером, Массимо Поратти, Фредом Шерри, Ларсом Стретером, Стивеном Строгачем, Эндрю Строминджером, Генри Ти, Кумруном Вафой и Габриэле Венециано, которые дали мне много полезных советов и поощрили меня к дальнейшей работе над книгой. Я хотел бы выразить особую благодарность Рафаэлю Ганнеру, помимо всего прочего, за его проницательную критику на ранних стадиях работы, которая помогла мне найти общую форму книги, а также Роберту Мэли за его ненавязчивое, но настойчивое побуждение перейти от слов к делу и начать писать книгу. Стивен Вайн-

10 Предисловие

берг и Сидни Коулмен дали мне ряд ценных советов и оказали немалую помощь в работе над книгой. Кэрол Арчер, Вики Карстенс, Дэвиду Касселю, Энн Койл, Майклу Дункану, Джейн Форман, Уэнди Грин, Сюзан Грин, Эрику Йендрессену, Гэри Касс, Шива Кумару, Роберту Мохинни, Пам Морхауз, Пьеру Рамону, Аманде Селз и Эйро Симончелли я обязан многочисленными, чрезвычайно полезными обсуждениями. Я в долгу перед Костасом Эфтимиу за его помощь в проверке фактов и поиске ссылок, а также в превращении моих первоначальных набросков в рисунки, на основе которых Том Рокуэлл создал — с терпением святого и художественным вкусом — иллюстрации к книге. Я также благодарен Эндрю Хэнсону и Джиму Сесна за их помощь в подготовке некоторых специальных рисунков.

Я благодарен Говарду Джорджи, Шелдону Глэшоу, Майклу Грину, Джону Шварцу, Джону Уилеру, Эдварду Виттену и, опять же, Эндрю Строминджеру, Кумруну Вафе и Габриэле Венециано за согласие ответить на вопросы и поделиться своими взглядами на различные темы, рассмотренные в книге.

Я счастлив выразить свою признательность Анжеле фон дер Липпе за ее проницательные замечания и ценные предложения, а также Трэйси Нэгл за ее исключительное внимание к деталям. Анжела и Трэйси были редакторами моей книги в издательстве W. W. Norton и немало способствовали значительному улучшению ясности изложения. Я также хотел бы поблагодарить моих литературных агентов, Джона Брокмана и Катинку Мэтсон, за квалифицированные рекомендации на всем протяжении работы над книгой, вплоть до ее выхода в свет.

Я хотел бы выразить самую искреннюю признательность за щедрую поддержку моих более чем пятнадцатилетних исследований в области теоретической физики Национальному научному фонду США, фонду Альфреда П. Слоана и Министерству энергетики США. Наверное, не удивительно, что мои собственные исследования посвящены воздействию, которое теория суперструн оказала на наши представления о пространстве и времени; в последующих главах я опишу некоторые из открытий, в которых мне посчастливилось принимать участие. Я надеюсь, что читатель получит удовольствие от чтения этих отчетов о собственной работе, хотя осознаю, что они могут создать преувеличенное впечатление о моей роли в разработке теории суперструн. Поэтому разрешите воспользоваться этой возможностью, чтобы выразить свою признательность более чем тысяче физиков по всему миру, отдающих свой труд и талант работе по созданию окончательной теории мироздания. Я приношу свои извинения тем, чьи работы я не назвал: это связано только с выбранной мной идеей построения книги и ограниченностью ее объема.

Наконец, я хочу выразить сердечную признательность Элен Арчер за ее бесконечную любовь и поддержку, без которой эта книга никогда не была бы написана.

Часть I. НА ПЕРЕДНЕМ КРАЮ ПОЗНАНИЯ

Глава 1. Связанные струной

Говорить о сознательном замалчивании было бы, конечно же, преувеличением. Однако более полувека — даже в разгар величайших в истории научных открытий — физики спокойно мирились с существованием темного облачка, клубящегося на далеком горизонте. А дело здесь вот в чем. Современная физика покоится на двух столпах. Один из них — это общая теория относительности Альберта Эйнштейна, которая дает теоретическую основу для понимания вселенной в ее наиболее крупных масштабах — звезд, галактик, скоплений галактик, и далее к необъятным просторам самой вселенной. Другой столп — это квантовая механика, дающая теоретическую базу для понимания вселенной в ее наименьших масштабах — молекул, атомов и далее вглубь субатомных частиц, таких как электроны и кварки. За годы исследований физики с невообразимой точностью экспериментально подтвердили практически все предсказания каждой из этих теорий. Но использование этих же теоретических средств с неизбежностью ведет еще к одному, обескураживающему выводу: в своей современной формулировке общая теория относительности и квантовая механика не могут быть справедливы одновременно. Эти две теории, обусловившие небывалый прогресс физики последнего столетия, который объяснил и расширение небес и основы строения материи, являются взаимно несовместимыми.

Если вам не приходилось ранее слышать об этом свирепом антагонизме, то вы, наверное, захотите узнать почему. Ответ не составляет большого секрета. За исключением наиболее экстремальных случаев, физики изучают либо объекты малые и легкие (как атомы и их составные части), либо объекты огромные и массивные (как звезды и галактики), но не те и другие одновременно. Это означает, что им достаточно было использовать либо только квантовую механику, либо общую теорию относительности, и они могли как бы невзначай отмахнуться от кричащего предостережения другой теории. На протяжении пятидесяти лет этот подход если и не подпадал под определение «блаженное неведение», то был весьма недалек от него.

Но Вселенная может быть экстремальной. В центрах черных дыр чудовищные массы сжимаются до микроскопических объемов. В момент Большого взрыва вся Вселенная была исторгнута из микроскопического ядра, по сравнению с которым песчинка весом в долю грамма выглядит исполином. Это примеры объектов, которые являются крошечными по размерам и, в то же время, невероятно массивными, и потому требуют одновременной наводки орудий как квантовой механики, так и общей теории отно-

12 Часть I. На переднем краю познания

сительности. По причинам, которые будут становиться все более очевидными по мере продолжения нашего рассказа, при объединении уравнений общей теории относительности и квантовой механики начинается тряска, грохот и шипение пара, как в перегретом котле. Если выражаться менее образно, несчастливый союз этих двух теорий может приводить к появлению бессмысленных ответов на корректно поставленные физические вопросы. Даже если вы позволите глубинам черных дыр и началу Вселенной и далее скрываться под покровом тайны, вам не удастся избежать ощущения, что враждебность между квантовой механикой и общей теорией относительности вопиет о необходимости выработки более глубокого уровня понимания. Возможно ли, чтобы Вселенная была разделена на наиболее фундаментальном уровне, требуя одного набора законов для больших объектов и другого, несовместимого с первым, для малых?

Теория суперструн, зеленый новичок по сравнению с почтенными доктринами квантовой механики и общей теории относительности, отвечает на этот вопрос обнадеживающим «нет». Интенсивные исследования, проводившиеся в течение последнего десятилетия физиками и математиками всего мира, показали, что этот новый подход к описанию материи на ее наиболее фундаментальном уровне устраняет конфликт между общей теорией относительности и квантовой механикой. На самом деле теория суперструн дает больше. В этой новой системе общая теория относительности и квантовая механика необходимы друг другу для того, чтобы теоретические построения обрели смысл. Согласно теории суперструн, брачный союз законов макромира и микромира не только счастливый, но и неизбежный.

Но это только часть хороших новостей. Благодаря теории суперструн (или, для краткости, теории струн) этот союз делает гигантский шаг вперед. В течение трех десятилетий Эйнштейн был в поисках единой теории физики, которая должна была по его замыслу представлять собой единое теоретическое полотно, в ткань которого были бы вплетены все силы и взаимодействия природы и все составные элементы материи. Он потерпел неудачу. Сегодня, на заре нового тысячелетия, сторонники теории струн утверждают, что ускользающие нити этого единого полотна наконец-то найдены. Теория струн способна показать, что все удивительные события во Вселенной — от неистовой пляски субатомных кварков до величавых вальсов кружащихся двойных звезд, от изначального огненного шара Большого взрыва до величественных спиралей галактик — являются отражениями одного великого физического принципа, одного главного уравнения.

Поскольку эти особенности теории струн требуют радикального изменения наших представлений о пространстве, времени и материи, понадобится некоторое время, чтобы привыкнуть к новым понятиям, чтобы понимание их смысла достигло достаточного уровня. Однако, как станет ясно из дальнейшего, если взглянуть на теорию струн в надлежащем контексте, ее появление окажется поразительным, однако естественным результатом революционных открытий физики XX столетия. Мы увидим, что в действительности противоречие между общей теорией относительности и квантовой механикой было не первым, а третьим в последовательности поворотных конфликтов, с которыми столкнулась физика прошлого века. Разрешение каждого из этих конфликтов приводило к радикальному пересмотру нашего понимания Вселенной.

Три конфликта

Первый конфликт, отмеченный учеными еще в конце XIX в., связан с загадочными свойствами распространения света. Коротко говоря, в соответствии с законами движения Исаака Ньютона, если бежать достаточно быстро, то можно догнать луч света, тогда как, согласно законам электромагнетизма Джеймса Клерка Максвелла, это сделать невозможно. Как будет показано в главе 2, Эйнштейн разрешил это противоречие в своей специальной теории относительности, полностью изменив при этом наше понимание пространства и времени. Согласно специальной теории относительности время и пространство не могут более рассматриваться как универсальные понятия, устано-

Глава 1. Связанные струной 13

аленные раз и навсегда и воспринимаемые всеми одинаково. Напротив, пространство и время, как следует из работ Эйнштейна, представляют собой податливые конструкции, форма и характеристики которых зависят от состояния движения наблюдателя.

Создание специальной теории относительности подготовило почву для второго конфликта. Одно из следствий работы Эйнштейна состоит в том, что никакой объект, никакое воздействие или возмущение не могут перемещаться со скоростью, превышающей скорость света. Но, как будет показано в главе 3, подтверждаемая экспериментально и привлекательная на интуитивном уровне универсальная теория гравитации Ньютона включает в себя взаимодействия, которые мгновенно распространяются на огромные расстояния в пространстве. И снова в разрешение конфликта включился Эйнштейн, предложивший в 1915 г. новую концепцию тяготения в своей общей теории относительности. Эта теория точно так же опрокинула существовавшие представления о гравитации, как раньше это сделала специальная теория относительности с понятиями пространства и времени. Пространство и время не только зависят от состояния движения наблюдателя, они также могут деформироваться и искривляться в ответ на присутствие вещества или энергии. Как мы увидим далее, такие деформации структуры пространства и времени передают силу тяжести из одного места в другое. Следовательно, пространство и время нельзя более рассматривать как статичные декорации, на фоне которых разворачиваются события во Вселенной. Напротив, как показала специальная, а затем и общая теория относительности, они принимают самое непосредственное участие в событиях.

Вслед за этим история повторилась еще раз. Создание общей теории относительности, разрешив одно противоречие, породило другое. Начиная с 1900 г., в течение трех десятилетий физики развивали квантовую механику (обсуждаемую в главе 4) для решения нескольких кричащих проблем, возникших при попытке применить понятия XIX в. к микромиру. Как было сказано выше, третье и наиболее глубокое противоречие возникло из несовместимости квантовой механики и общей теории относительности. В главе 5 будет показано, что гладкая искривленность пространства в общей теории относительности находится в противоречии с вытекающим из квантовой механики неистовым, вихревым поведением Вселенной на микроскопическом уровне. До середины 1980-х гг., когда теория струн разрешила этот конфликт, он справедливо считался центральной проблемой современной физики. Более того, теория струн, построенная на основе специальной и обшей теории относительности, требует нового серьезного пересмотра наших концепций пространства и времени. Например, большинство из нас считает само собой разумеющимся то, что наша Вселенная имеет три пространственных измерения. Однако, согласно теории струн, это неверно. Теория струн утверждает, что Вселенная имеет гораздо больше измерений, чем доступно нашему глазу, но дополнительные измерения туго скручены и спрятаны в складчатой структуре космического пространства. Эти замечательные гипотезы о структуре пространства и времени играют такую важную роль, что они станут лейтмотивом всего последующего изложения. Теория струн, по существу, отражает историю развития представлений о пространстве и времени в постэйнштейновскую эпоху.

Чтобы понять реальную ценность теории струн, необходимо отступить на шаг назад и кратко описать то, что мы узнали о микроскопической структуре Вселенной в течение XX столетия.

Вселенная в своем самом малом, или что мы знаем о материи

Древние греки предположили, что вещество Вселенной состоит из мельчайших «неделимых» частиц, которые они назвали атомами. Они высказали гипотезу, что точно так же, как в языках алфавитного типа огромное количество слов строится путем комбинации небольшого числа букв, так и огромное разнообразие материальных объектов может быть результатом комбинации небольшого

14 Часть I. На переднем краю познания

числа различных элементарных строительных блоков. Это было гениальным предвидением. Спустя более 2000 лет мы продолжаем считать его верным, хотя представления о сущности этих фундаментальных строительных блоков неоднократно подвергались пересмотру. В XIX в. ученые показали, что многие обычные вещества, например, кислород и углерод, состоят из мельчайших компонентов, которые, следуя традиции, идущей от греков, были названы атомами. Название сохранилось, но время показало, что оно было неправильным, поскольку атомы определенно являются «делимыми». К началу 1930-х гг. совместными усилиями Дж. Дж. Томсона, Эрнеста Резерфорда, Нильса Бора и Джеймса Чедвика была разработана известная большинству из нас модель строения атома, похожая на солнечную систему. Атомы, которые являются далеко не самыми элементарными частицами материи, состоят из ядра (содержащего протоны и нейтроны), окруженного роем движущихся по орбитам электронов.

В течение некоторого времени многие физики считали, что протоны, нейтроны и электроны являются «атомами» в том смысле, который вкладывали в это слово древние греки. Однако эксперименты, проведенные в 1968 г. на Стэнфордском линейном ускорителе и использовавшие возросшую мощь технологий для изучения глубин микромира, продемонстрировали, что ни протоны, ни нейтроны не являются фундаментальными. Эти эксперименты показали, что они состоят из трех частиц меньшего размера, названных кварками. Это вымышленное название было заимствовано теоретиком Мюрреем Гелл-Манном, предсказавшим существование кварков, из произведения ирландского писателя Джеймса Джойса Поминки по Финнегану. Экспериментаторы установили, что сами кварки делятся на два типа, которые несколько менее изысканно были названы и-кварками и d-кварками. Протон состоит из двух и-кварков и одного d-кварка, а нейтрон — из двух d-кварков и одного и-кварка.

Все, что мы видим на Земле и в небесах, по-видимому, состоит из комбинаций электронов, и-кварков и d-кварков. Не существует экспериментальных данных, указывающих на то, что какая-либо из этих трех частиц состоит из элементов меньшего размера. Однако имеется масса данных, свидетельствующих о том, что Вселенная содержит дополнительные компоненты. В середине 1950-х гг. Фредерик Райнес и Клайд Коуэн получили решающее экспериментальное доказательство существования четвертого типа фундаментальных частиц, названных нейтрино. Существование этих частиц было предсказано в начале 1930-х гг. Вольфгангом Паули. Нейтрино оказалось очень трудно обнаружить: это частица-призрак, которая чрезвычайно редко взаимодействует с другими видами материн. Нейтрино средней по величине энергии легко проникает сквозь многие триллионы миль свинца, которые не оказывают ни малейшего влияния на его движение. Эта информация должна принести вам значительное облегчение, поскольку прямо сейчас, когда вы читаете эту книгу, миллиарды нейтрино, испущенных Солнцем, проходят через ваше тело и через Землю в ходе долгих скитаний по космическому пространству. В конце 1930-х гг. физики, исследующие космические лучи (потоки частиц, которые бомбардируют Землю из космоса), открыли еще одну частицу, названную мюоном. Эта частица идентична электрону, за исключением того, что она примерно в 200 раз тяжелее. Поскольку в мироздании не было ничего — ни нерешенных загадок, ни пустующих ниш, — что требовало бы существования мюона, нобелевский лауреат, специалист по физике элементарных частиц Исидор Исаак Раби приветствовал открытие мюона не слишком радостной фразой: «Ну, и кто это заказывал?» Тем не менее, мюон существовал. За ним последовали многие другие частицы.

Используя все более мощную технику, физики продолжали сталкивать крошечные частицы материи все более высокой энергии. При этом в течение коротких промежутков времени воссоздавались условия, не существовавшие со времен Большого взрыва. Среди образовавшихся осколков ученые искали новые фундаментальные частицы, чтобы добавить их к растущему списку элементарных частиц. Вот что они обнаружили: еще четыре кварка — с, s, b и t, еще

Глава 1. Связанные струной 15

Таблица 1.1

Три семейства фундаментальных частиц и массы частиц (в долях массы протона). Значения масс нейтрино до сих пор не удалось определить экспериментально

Семейство 1 Семейство 2 Семейство 3
Частица Масса Частица Масса Частица Масса
Электрон 0,00054 Мюон 0,11 Тау 1,9
Электронное нейтрино < 10-8 Мюонное нейтрино < 0,0003 Тау-нейтрино < 0,033
и-кварк 0,0047 с-кварк 1,6 t-кварк 189,0
d-кварк 0,0074 s-кварк 0,16 b-кварк 5,2

одного, даже более тяжелого, родственника электрона, названного тау-лептоном, а также еше две частицы, свойства которых схожи со свойствами нейтрино (они получили название мюонного нейтрино и тау-нейтрино, чтобы отличить их от первого нейтрино, которое стало называться электронным нейтрино). Эти частицы образуются в соударениях при высокой энергии, они существуют только в течение коротких промежутков времени и не входят в состав обычной материи. Но и это еще не конец истории. Каждая из этих частиц имеет соответствующую ей античастицу, обладающую такой же массой, но являющейся противоположной в некоторых других отношениях, например, противоположной по электрическому заряду (или зарядам других видов взаимодействий, обсуждаемых ниже). Например, античастица электрона называется позитроном, она имеет такую же массу, но ее электрический заряд*) равен +1, тогда как у электрона он составляет — 1. При контакте вещество и антивещество взаимно уничтожаются, превращаясь в чистую энергию — вот почему антивещество, образовавшееся естественным образом, крайне редко встречается в окружающем нас мире.

Физики подметили закономерность в свойствах этих частиц (см. табл. 1.1). Частицы материи четко разделяются на три группы, которые часто называют семействами. Каждое семейство состоит из двух кварков, электрона или одного из его родственников, и одного из типов нейтрино. Свойства соответствующих частиц в трех семействах идентичны за исключением массы, которая последовательно увеличивается в каждом следующем семействе. В настоящее время физики исследуют структуру вещества в масштабах порядка одной миллиардной от одной миллиардной доли метра; при этом показано, что все вещество, найденное по сей день — естественное или полученное искусственно при помощи гигантских устройств для столкновения атомов — состоит из комбинаций частиц, входящих в эти семейства, и соответствующих им античастиц.

Взгляд на табл. 1.1, несомненно, вызовет у вас еще большее изумление, чем то, которое испытал Раби при открытии мюона. Разделение на семейства, по крайней мере, вносит какую-то видимость порядка, но при этом возникают многочисленные «почему». Почему требуется так много фундаментальных частиц, особенно если вспомнить, что для подавляющего большинства окружающих нас тел требуются только электроны, и-кварки и d-кварки? Почему семейств три? Почему не одно семейство, или не четыре, или не какое-нибудь другое число? Почему наблюдается такой, на первый взгляд совершенно случайный, разброс значений масс частиц, например, почему масса тау-частицы в 3 520 раз больше массы электрона? Почему масса t-кварка в 40 200 раз больше массы и-кварка? Все эти числа выглядят странно, они кажутся случайными. Являются ли они игрой случая, связаны ли они с каким-то божественным выбором, или эти фундаментальные

* Подразумевается, что заряды частиц выражены в единицах элементарного заряда е = 1,6 • 10--19 Кл. — Прим. перев.

16 Часть I. На переднем краю познания

свойства нашей Вселенной имеют какое-то разумное научное объяснение?

Взаимодействия, или куда делся фотон

Картина только усложнится, если мы будем рассматривать существующие в природе взаимодействия. В окружающем нас мире полно самых различных способов оказания воздействий: бейсбольные биты бьют по мячам, энтузиасты банги (прыжков с привязанным к ногам канатом) бросаются вниз с вышек, магниты позволяют сверхскоростным поездам парить над металлическими рельсами, счетчики Гейгера издают щелчки в присутствии радиоактивных материалов, атомные бомбы могут взрываться. Мы можем воздействовать на тела, толкая, дергая или тряся их, бросая или стреляя в них другими телами; вытягивая, закручивая или сдавливая их, а также нагревая, охлаждая или поджигая. В течение последнего столетия физики накопили огромное количество доказательств того, что все эти взаимодействия между различными телами и материалами, а также миллионы миллионов других происходящих ежедневно взаимодействий могут быть сведены к сочетаниям четырех основных типов. Одним из них является гравитационное взаимодействие. Три других — это электромагнитное, слабое и сильное взаимодействия.

Гравитационное взаимодействие наиболее привычно для нас — благодаря ему наша планета удерживается на орбите, вращаясь вокруг Солнца, а наши ноги твердо стоят на земле. Масса тела является мерой влияния, которое оказывают на него гравитационные силы, а также мерой гравитационных сил, создаваемых самим телом. Следующим хорошо известным видом взаимодействия являются электромагнитные силы. Этим силам мы обязаны комфортом современной жизни, они используются в электрическом освещении, компьютерах, телевидении, телефонах; кроме того, они лежат в основе устрашающей мощи грозы и нежного прикосновения человеческой руки. На микроскопическом уровне электрический заряд частиц играет ту же роль, что и масса для гравитационного взаимодействия: он определяет величину электромагнитного воздействия частицы и ее отклик на электромагнитное воздействие со стороны других частиц.

Сильное и слабое взаимодействия менее известны, поскольку их сила быстро убывает с расстоянием и играет существенную роль только на субатомном уровне — внутри ядер. В этом состоит причина того, что они были открыты совсем недавно. Сильное взаимодействие удерживает кварки в «склеенном» состоянии внутри протонов и нейтронов; оно же удерживает протоны и нейтроны плотно упакованными в атомном ядре. Наиболее известное проявление слабого взаимодействия связано с радиоактивным распадом таких веществ, как уран и кобальт.

В течение прошлого столетия физики обнаружили два общих для всех этих взаимодействий свойства. Во-первых, как будет рассмотрено в главе 5, на микроскопическом уровне каждому взаимодействию соответствует частица, которая может рассматриваться как наименьший сгусток этого взаимодействия. Когда лазер, «электромагнитное ружье», испускает пучок лучей, из него вылетает на самом деле поток фотонов, представляющих собой мельчайшие переносчики электромагнитного взаимодействия. Аналогично, наименьшими компонентами слабого и сильного взаимодействия являются частицы, известные под названием слабых калибровочных бозонов и глюонов. (Название глюон *) является особенно образным: глюоны могут рассматриваться как микроскопические компоненты прочного клея, удерживающего вместе составляющие атомное ядро частицы.) К 1984 г. экспериментаторы смогли подтвердить существование и детально изучить свойства приведенных в табл. 1.2 трех типов частиц, отвечающих за различные виды взаимодействия. Физики считают, что с гравитационным взаимодействием также связана частица — гравитон, однако ее существование пока не получило экспериментального подтверждения.

Вторая общая черта всех видов взаимодействия состоит в том, что точно так-

*) От английского glue — «клей, склеивать». — Прим. перев.

Глава 1. Связанные струной 17

Таблица 1.2

Четыре фундаментальных типа взаимодействий, существующих в природе; частицы, переносящие эти взаимодействия, и их массы (в единицах массы протона). (Переносчики слабого взаимодействия имеют различные массы, указанные в таблице. Теоретические исследования говорят о том, что масса гравитона

должна быть равна нулю)

Взаимодействие Частица, переносящая взаимодействие Масса
Сильное Глюон 0
Электромагнитное Фотон 0
Слабое Слабые калибровочные бозоны 86,97
Гравитационное Гравитон 0

же как для гравитационного взаимодействия степень влияния на тело определяется его массой, а для электромагнитного взаимодействия — зарядом, мера влияния сильного и слабого взаимодействий на все частицы определяется количеством «сильного заряда» и «слабого заряда». (Эти свойства приведены в таблице в примечаниях к данной главе1)).) Но, как и в случае с массами частиц, все, что смогли сделать физики — это тщательно измерить в эксперименте данные характеристики. Никто не предложил никакого объяснения, почему наша Вселенная состоит именно из этих частиц, и почему они имеют именно такие значения масс и зарядов.

Несмотря на наличие общих свойств, исследование фундаментальных взаимодействий привело только к появлению новых вопросов. Почему, например, существуют четыре фундаментальных взаимодействия? Почему не пять или три, или, может быть, одно? Почему эти взаимодействия имеют столь различные свойства? Почему сильное и слабое взаимодействия работают только в микроскопическом масштабе, тогда как гравитационные и электромагнитные силы имеют неограниченную область влияния? И с чем связано такое огромное различие в интенсивности этих взаимодействий?

Для того чтобы лучше понять последний вопрос, представьте себе, что у вас есть один электрон в левой руке и один — в правой. Попробуйте сблизить эти две частицы, имеющие одинаковый электрический заряд. Взаимное гравитационное притяжение будет способствовать их сближению, а электромагнитное отталкивание — препятствовать ему. Какое из этих взаимодействий одержит верх? Здесь все ясно: электромагнитное отталкивание примерно в миллион миллиардов миллиардов миллиардов миллиардов (1042) раз сильнее! Если представить, что размер вашего правого бицепса характеризует силу гравитационного взаимодействия, то ваш левый бицепс должен простираться за пределы известной части Вселенной, чтобы его размер мог дать сравнительное представление о силе электромагнитного взаимодействия. Единственная причина, по которой электромагнитные силы не доминируют полностью над гравитационными в окружающем нас мире, заключена в том, что большинство тел состоит из одинакового числа положительных и отрицательных частиц, и, в результате, создаваемые ими силы нейтрализуют друг друга. С другой стороны, гравитационные силы всегда являются силами притяжения, и для них не происходит нейтрализации — чем больше вещества, тем сильнее будет гравитационное взаимодействие. Однако, по существу, гравитационное взаимодействие является чрезвычайно слабым. (Этим объясняется трудность экспериментального подтверждения существования гравитона. Поиск наименьшего сгустка самого слабого из взаимодействий — очень трудная задача.) Эксперименты также показали, что сильное взаимодействие примерно в тысячу раз сильнее электромагнитного и в сто тысяч раз сильнее слабого взаимодействия. Но в чем же состоит причина того, что наша Вселенная имеет такие свойства?

Вопрос о том, почему те или иные характеристики имеют именно такие значения, от-

18 Часть I. На переднем краю познания

нюдь не является праздным; Вселенная была бы совсем иной, если бы свойства материи и частиц, отвечающих за фундаментальные взаимодействия, хотя бы чуть-чуть изменились. Например, существование стабильных ядер, образующих около сотни элементов периодической системы, очень сильно зависит от соотношения сильного и электромагнитного взаимодействия. Протоны, находящиеся в атомном ядре, отталкивают друг друга в результате действия электромагнитных сил. К счастью, сильное взаимодействие между составляющими эти протоны кварками преодолевает силы отталкивания и удерживает протоны вместе. Однако относительно небольшое изменение соотношения между величинами этих двух взаимодействий может легко нарушить равновесие и привести к разрушению большинства атомных ядер. Далее, если бы масса электрона была всего в несколько раз больше, электроны и протоны начали бы объединяться, образуя нейтроны и захватывая ядра водорода (простейшего элемента во Вселенной, с ядром, состоящим из одного протона), а это, в свою очередь, привело бы к нарушению баланса образования более сложных элементов. Существование звезд зависит от взаимодействий между стабильными ядрами; звезды не смогли бы образоваться при таком изменении фундаментальных физических законов. Величина гравитационных сил также играет важную роль. Огромная плотность вещества в центре звезды питает ядерный очаг и, тем самым, определяет интенсивность излучения звезды. Если величина гравитационных сил увеличится, давление в недрах звезд возрастет, что приведет к значительному росту интенсивности ядерных реакций. Но так же как яркое пламя исчерпывает горючее гораздо быстрее, чем тихое пламя свечи, так и увеличение скорости ядерных реакций привело бы к тому, что звезды, подобные нашему Солнцу, выгорели быстрее. Это оказало бы разрушительное влияние на зарождение жизни в том виде, в котором она нам известна. С другой стороны, если бы гравитационные силы существенно уменьшились, вещество не смогло бы собраться в скопления, не возникли бы звезды и галактики.

Мы могли бы продолжить, но основная идея ясна: Вселенная такая, какая она есть, потому, что вещество и частицы, отвечающие за фундаментальные взаимодействия, имеют те свойства, которые они имеют. Но существует ли научное объяснение тому, почему они имеют именно такие свойства?

Теория струн: основная идея

Теория струн представляет собой мощную парадигму понятий, которая впервые дает ответ на поставленные выше вопросы. Рассмотрим сначала основную идею этой теории.

Частицы, приведенные в табл. 1.1, являются «буквами» для всего вещества. Кажется, что, как и их лингвистические аналоги, частицы не имеют внутренней структуры. Теория струн говорит иное. Она утверждает, что если бы мы могли исследовать эти частицы с более высокой точностью, на много порядков превышающей наши современные технические возможности, мы обнаружили бы, что каждая из частиц является не точечным образованием, а состоит из крошечной одномерной петли. Внутри каждой частицы — вибрирующее, колеблющееся, пляшущее волокно, подобное бесконечно тонкой резиновой ленте, которое физики, не наделенные

Рис. 1.1. Вещество состоит из атомов, которые в свою очередь состоят из кварков и электронов. Согласно теории струн все такие частицы в действительности представляют собой крошечные петли вибрирующих струн


Pages:     || 2 | 3 | 4 | 5 |   ...   | 14 |
 




<
 
2013 www.disus.ru - «Бесплатная научная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.